An LSTM-based Recurrent Neural Network that translates Modern English into Old (Shakespearean) English
- Encoder-Decoder RNN that takes modern English as input and outputs Old English
- Fronted interface built with Flask to interact with model
- Clone repo
- Create and activate virtual environment
cd path/to/NeuralMachineTranslation
python -m venv project-env
source project-env/bin/activate
- Install requirements
pip install -r requirements.txt
- From command line, run app using following
python src/app.py
- Paste the generated localhost server url into browser
Example: http://127.0.0.1:5000/
- Modify the RNN's architecture found in:
src/nmt.py
- Finetune the model's hyperparameters in:
src/train_model.py
├── README.md <- The top-level README for developers using this project.
├── datasets <- Data files used to train and test model
|
├── models <- Trained and serialized models
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ ├── app.py <- Runs web application
│ │
│ ├── data <- Helper functions to carry out data preprocessing
│ │ ├── preprocessing.py
│ │ └── vocab.py
│ │
│ ├── model <- Modules and scripts to build/train models and make translations
│ │ ├── encoder.py
│ │ ├── decoder.py
│ │ ├── nmt.py
│ │ ├── train_model.py
│ │ └── predict_model.py
│ ├── static <- Contains JavaScript and CSS files
│ │ ├── site.css
│ │ └── input.js
│ ├── templates <- Contains HTML
│ │ └── index.html