This repository contains a collection of AI/ML Docker images catering to different levels of development and deployment needs. These images are preconfigured with essential tools, libraries, and dependencies to streamline machine learning workflows.
- Image:
minimal-aiml
- Description: A lightweight image with essential AI/ML tools for data processing and scientific computing.
- Base Image:
python:3.9
- Tags:
latest
,minimal
- Includes:
- Python Essentials:
pip
,setuptools
- Numerical & Data Processing:
numpy
,pandas
- Visualization:
matplotlib
,seaborn
- Jupyter Support:
jupyter
- Utilities:
scipy
,tqdm
- Python Essentials:
- Build and Push:
- Navigate to the
minimal
directory and run the following command:./build_and_push.sh
- Navigate to the
- Image:
common-aiml
- Description: Includes TensorFlow, PyTorch, scikit-learn, and Jupyter Notebook.
- Base Image:
python:3.9
- Tags:
latest
,common
- Includes:
- Python Essentials:
pip
,setuptools
,wheel
- Numerical & Data Processing:
numpy
,pandas
,scipy
,tqdm
,joblib
- Visualization:
matplotlib
,seaborn
,plotly
- Machine Learning:
scikit-learn
,xgboost
,lightgbm
,catboost
- Deep Learning Frameworks:
tensorflow
,torch
,torchvision
,torchaudio
,keras
- Jupyter & Interactive Development:
jupyter
,jupyterlab
,notebook
,ipython
,nbconvert
- Data Handling & Feature Engineering:
pillow
,opencv-python
,nltk
,spacy
,transformers
- Model Persistence & Deployment:
mlflow
,onnx
,onnxruntime
,fastapi
- Python Essentials:
- Build and Push:
- Navigate to the
common
directory and run the following command:./build_and_push.sh
- Navigate to the
- Image:
advanced-aiml
- Description: Contains AI/ML frameworks with GPU acceleration, Hugging Face Transformers, XGBoost, and MLFlow.
- Base Image:
nvidia/cuda
- Tags:
latest
,advanced
- Image:
kitchen-sink-aiml
- Description: A comprehensive AI/ML environment with all major frameworks, libraries, and Jupyter support.
- Base Image:
nvidia/cuda
- Tags:
latest
,full-stack
# Example: Pull Common AI/ML Tools Image
docker pull dockerhub.com/capturealpha/common-aiml:latest
# Example: Run Jupyter Notebook with Advanced AI/ML Tools
docker run --gpus all -p 8888:8888 -v $(pwd):/workspace dockerhub.com/capturealpha/advanced-aiml
Each directory contains a Dockerfile
. To build an image locally:
cd common-aiml
docker build -t my-common-aiml:latest .
Contributions are welcome! Feel free to submit a PR for new AI/ML Docker images or improvements to existing ones.
This repository is licensed under the MIT License. See LICENSE for details.
- Nathan Bolam - GitHub