Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Infer dtype in SymbolBlock import from input symbol (v1.3.x) #13117

Merged
merged 13 commits into from
Nov 7, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 80 additions & 6 deletions python/mxnet/gluon/block.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
import re
from collections import OrderedDict

from ..base import mx_real_t
from .. import symbol, ndarray, initializer
from ..symbol import Symbol
from ..ndarray import NDArray
Expand Down Expand Up @@ -1053,13 +1054,20 @@ def __init__(self, outputs, inputs, params=None):
"SymbolBlock doesn't support Parameter '%s' because its storage " \
"type is 'row_sparse'." % j.name

for i in out.list_arguments():
if i not in input_names:
self.params.get(i, allow_deferred_init=True)
# Infer type of parameters. Without this, every parameter will be created with
# default type i.e., fp32
arg_params = out.list_arguments()
aux_params = out.list_auxiliary_states()

for i in out.list_auxiliary_states():
if i not in input_names:
self.params.get(i, grad_req='null', allow_deferred_init=True)
arg_types, aux_types = _infer_param_types(syms, out, arg_params, aux_params)

for i, arg in enumerate(arg_params):
if arg not in input_names:
self.params.get(arg, allow_deferred_init=True, dtype=arg_types[i])

for i, aux in enumerate(aux_params):
if aux not in input_names:
self.params.get(aux, grad_req='null', allow_deferred_init=True, dtype=aux_types[i])

self._cached_graph = syms, out
len_prefix = len(_common_prefix(list(self._params.keys())))
Expand All @@ -1084,5 +1092,71 @@ def _clear_cached_op(self):
super(SymbolBlock, self)._clear_cached_op()
self._cached_graph = tmp

def cast(self, dtype):
self._clear_cached_op()
super(SymbolBlock, self).cast(dtype)

def hybrid_forward(self, F, x, *args, **kwargs):
raise NotImplementedError

def _infer_param_types(in_params, out_params, arg_params, aux_params, default_dtype=mx_real_t):
"""Utility function that helps in inferring DType of args and auxs params
from given input param.
Parameters
----------
in_params: List of Symbol
List of input symbol variables.
out_params: Symbol
Output symbol variable.
arg_params: List of Str
List of names of argument parametrs.
aux_params: List of Str
List of names of auxiliary parameters.
default_dtype: numpy.dtype or str, default 'float32'
Default data type for arg_params and aux_params, if unable to infer the type.
Returns
-------
arg_types: List of numpy.dtype
List of arg_params type. Order is same as arg_params.
Defaults to 'float32', if unable to infer type.
aux_types: List of numpy.dtype
List of aux_params type. Order is same as aux_params.
Defaults to 'float32', if unable to infer type.
"""
arg_types = None
aux_types = None

# Get Input symbol details. This will be used to infer types of
# other parameters.
input_sym_names = [in_param.name for in_param in in_params]

# Try to infer input types. If not successful, we will set default dtype.
# If successful, we will try to infer other params in the graph.
input_sym_arg_types = []
can_infer_input_type = True
for in_param in in_params:
input_sym_arg_type = in_param.infer_type()[0]
if not input_sym_arg_type or len(input_sym_arg_type) < 1:
can_infer_input_type = False
break
else:
input_sym_arg_types.append(in_param.infer_type()[0][0])

# Try to infer types of other parameters.
if can_infer_input_type:
params = {k:v for k, v in zip(input_sym_names, input_sym_arg_types)}
arg_types, _, aux_types = out_params.infer_type(**params)

if arg_types is None or len(arg_types) != len(arg_params):
arg_types = []
for _ in arg_params:
arg_types.append(default_dtype)

if aux_types is None or len(aux_types) != len(aux_params):
aux_types = []
for _ in aux_params:
aux_types.append(default_dtype)

return (arg_types, aux_types)
2 changes: 2 additions & 0 deletions python/mxnet/gluon/parameter.py
Original file line number Diff line number Diff line change
Expand Up @@ -727,6 +727,8 @@ def get(self, name, **kwargs):
if matched:
param._shape = tuple(inferred_shape)
continue
elif k == 'dtype' and np.dtype(v) == np.dtype(existing):
continue

assert v is None or v == existing, \
"Cannot retrieve Parameter '%s' because desired attribute " \
Expand Down
31 changes: 31 additions & 0 deletions tests/python/gpu/test_gluon_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from __future__ import print_function
import sys
import os
import tempfile
import time
import multiprocessing as mp
import unittest
Expand Down Expand Up @@ -198,6 +199,36 @@ def get_num_devices():
_check_batchnorm_result(mx.nd.random.uniform(shape=(4, 1, 4, 4)),
num_devices=ndev, cuda=True)

@with_seed()
def test_symbol_block_fp16():
# Test case to verify if initializing the SymbolBlock from a model with params
# other than fp32 param dtype.

# 1. Load a resnet model, cast it to fp16 and export
tmp = tempfile.mkdtemp()
tmpfile = os.path.join(tmp, 'resnet34_fp16')
ctx = mx.gpu(0)

net_fp32 = mx.gluon.model_zoo.vision.resnet34_v2(pretrained=True, ctx=ctx, root=tmp)
net_fp32.cast('float16')
net_fp32.hybridize()
data = mx.nd.zeros((1,3,224,224), dtype='float16', ctx=ctx)
net_fp32.forward(data)
net_fp32.export(tmpfile, 0)

# 2. Load the saved model and verify if all the params are loaded correctly.
# and choose one of the param to verify the type if fp16.
sm = mx.sym.load(tmpfile + '-symbol.json')
inputs = mx.sym.var('data', dtype='float16')
net_fp16 = mx.gluon.SymbolBlock(sm, inputs)
net_fp16.collect_params().load(tmpfile + '-0000.params', ctx=ctx)
# 3. Get a conv layer's weight parameter name. Conv layer's weight param is
# expected to be of dtype casted, fp16.
for param_name in net_fp16.params.keys():
if 'conv' in param_name and 'weight' in param_name:
break
assert np.dtype(net_fp16.params[param_name].dtype) == np.dtype(np.float16)

if __name__ == '__main__':
import nose
nose.runmodule()
38 changes: 38 additions & 0 deletions tests/python/unittest/test_gluon.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,9 @@
# specific language governing permissions and limitations
# under the License.

import os
import tempfile

import mxnet as mx
from mxnet import gluon
from mxnet.gluon import nn
Expand Down Expand Up @@ -336,6 +339,41 @@ def hybrid_forward(self, F, x):
net.hybridize()
assert isinstance(net(mx.nd.zeros((16, 10))), mx.nd.NDArray)

# Test case to verify if initializing the SymbolBlock from a model with params
# other than fp32 param dtype.

# 1. Load a resnet model, cast it to fp64 and export
tmp = tempfile.mkdtemp()
tmpfile = os.path.join(tmp, 'resnet34_fp64')
ctx = mx.cpu(0)

net_fp32 = mx.gluon.model_zoo.vision.resnet34_v2(pretrained=True, ctx=ctx, root=tmp)
net_fp32.cast('float64')
net_fp32.hybridize()
data = mx.nd.zeros((1,3,224,224), dtype='float64', ctx=ctx)
net_fp32.forward(data)
net_fp32.export(tmpfile, 0)

# 2. Load the saved model and verify if all the params are loaded correctly.
# and choose one of the param to verify the type if fp64.
sm = mx.sym.load(tmpfile + '-symbol.json')
inputs = mx.sym.var('data', dtype='float64')
net_fp64 = mx.gluon.SymbolBlock(sm, inputs)
net_fp64.collect_params().load(tmpfile + '-0000.params', ctx=ctx)
# 3. Get a conv layer's weight parameter name. Conv layer's weight param is
# expected to be of dtype casted, fp64.
for param_name in net_fp64.params.keys():
if 'conv' in param_name and 'weight' in param_name:
break
assert np.dtype(net_fp64.params[param_name].dtype) == np.dtype(np.float64)

# Cast the symbol block to FP32 and try to forward a FP32 data.
# This will verify SymbolBlock.cast() functionality.
net_fp64.cast('float32')
fp32_data = mx.nd.zeros((1,3,224,224), dtype='float32', ctx=ctx)
prediction = net_fp64.forward(fp32_data)
assert np.dtype(prediction.dtype) == np.dtype(np.float32)

@with_seed()
@raises(AssertionError)
def test_sparse_symbol_block():
Expand Down