-
Notifications
You must be signed in to change notification settings - Fork 1.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add db benchmark script #1928
Merged
yjshen
merged 11 commits into
apache:master
from
matthewmturner:add_db_benchmark_script
Mar 16, 2022
Merged
Add db benchmark script #1928
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
4ddb279
Initial
matthewmturner cb50c80
Create Dockerfile
matthewmturner 71cdbb6
Fix entry and script names
matthewmturner 6e51937
Remove blank lines
matthewmturner 876427e
Add local datafusion option
matthewmturner eaec91b
Fix comment
matthewmturner ecf209b
Add readme
matthewmturner d885ef2
Add license
matthewmturner 7c23302
More licenses
matthewmturner b6c304e
Arch agnostic
matthewmturner fde6f53
Fix readme
matthewmturner File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
<!--- | ||
Licensed to the Apache Software Foundation (ASF) under one | ||
or more contributor license agreements. See the NOTICE file | ||
distributed with this work for additional information | ||
regarding copyright ownership. The ASF licenses this file | ||
to you under the Apache License, Version 2.0 (the | ||
"License"); you may not use this file except in compliance | ||
with the License. You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, | ||
software distributed under the License is distributed on an | ||
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
KIND, either express or implied. See the License for the | ||
specific language governing permissions and limitations | ||
under the License. | ||
--> | ||
|
||
# Run db-benchmark | ||
|
||
## Directions | ||
|
||
Run the following from root `arrow-datafusion` directory | ||
|
||
```bash | ||
$ docker buildx build -t db-benchmark -f benchmarks/db-benchmark/db-benchmark.dockerfile . | ||
$ docker run --privileged db-benchmark | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
FROM ubuntu | ||
ARG DEBIAN_FRONTEND=noninteractive | ||
ARG TARGETPLATFORM | ||
|
||
RUN apt-get update && \ | ||
apt-get install -y git build-essential | ||
|
||
# Install R, curl, and python deps | ||
RUN apt-get -y install --no-install-recommends --no-install-suggests \ | ||
ca-certificates software-properties-common gnupg2 gnupg1 \ | ||
&& apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9 \ | ||
&& add-apt-repository 'deb https://cloud.r-project.org/bin/linux/ubuntu bionic-cran35/' \ | ||
&& apt-get -y install r-base \ | ||
&& apt-get -y install curl \ | ||
&& apt-get -y install python3.8 \ | ||
&& apt-get -y install python3-pip | ||
|
||
# Install R libraries | ||
RUN R -e "install.packages('data.table',dependencies=TRUE, repos='http://cran.rstudio.com/')" \ | ||
&& R -e "install.packages('dplyr',dependencies=TRUE, repos='http://cran.rstudio.com/')" | ||
|
||
# Install Rust | ||
RUN curl https://sh.rustup.rs -sSf | bash -s -- -y | ||
ENV PATH="/root/.cargo/bin:${PATH}" | ||
|
||
# Clone db-benchmark and download data | ||
RUN git clone https://github.com/h2oai/db-benchmark \ | ||
&& cd db-benchmark \ | ||
&& Rscript _data/groupby-datagen.R 1e7 1e2 0 0 \ | ||
&& Rscript _data/join-datagen.R 1e7 0 0 0 \ | ||
&& mkdir data \ | ||
&& mv G1_1e7_1e2_0_0.csv data \ | ||
&& mv J1_1e7_1e1_0_0.csv data \ | ||
&& mv J1_1e7_1e4_0_0.csv data \ | ||
&& mv J1_1e7_1e7_0_0.csv data \ | ||
&& mv J1_1e7_NA_0_0.csv data \ | ||
&& cd .. | ||
|
||
# Clone datafusion-python and build python library | ||
# Not sure if the wheel will be the same on all computers | ||
RUN git clone https://github.com/datafusion-contrib/datafusion-python \ | ||
&& cd datafusion-python && git reset --hard 368b50ed9662d5e93c70b539f94cceace685265e \ | ||
&& python3 -m pip install pip \ | ||
&& python3 -m pip install pandas \ | ||
&& python3 -m pip install -r requirements.txt \ | ||
&& cd .. | ||
|
||
# Copy local arrow-datafusion | ||
COPY . arrow-datafusion | ||
|
||
# 1. datafusion-python that builds from datafusion version referenced datafusion-python | ||
RUN cd datafusion-python \ | ||
&& maturin build --release \ | ||
&& case "${TARGETPLATFORM}" in \ | ||
*/amd64) CPUARCH=x86_64 ;; \ | ||
*/arm64) CPUARCH=aarch64 ;; \ | ||
*) exit 1 ;; \ | ||
esac \ | ||
# Version will need to be updated in conjunction with datafusion-python version | ||
&& python3 -m pip install target/wheels/datafusion-0.4.0-cp36-abi3-linux_${CPUARCH}.whl \ | ||
&& cd .. | ||
|
||
# 2. datafusion-python that builds from local datafusion. use this when making local changes to datafusion. | ||
# Currently, as of March 5th 2022, this done not build (i think) because datafusion is being split into multiple crates | ||
# and datafusion-python has not yet been updated to reflect this. | ||
# RUN cd datafusion-python \ | ||
# && sed -i '/datafusion =/c\datafusion = { path = "../arrow-datafusion/datafusion", features = ["pyarrow"] }' Cargo.toml \ | ||
# && sed -i '/fuzz-utils/d' ../arrow-datafusion/datafusion/Cargo.toml \ | ||
# && maturin build --release \ | ||
# && case "${TARGETPLATFORM}" in \ | ||
# */amd64) CPUARCH=x86_64 ;; \ | ||
# */amd64) CPUARCH=aarch64 ;; \ | ||
# *) exit 1 ;; \ | ||
# esac \ | ||
# && python3 -m pip install target/wheels/datafusion-0.4.0-cp36-abi3-linux_${CPUARCH}.whl \ | ||
# && cd .. | ||
|
||
# Make datafusion directory in db-benchmark | ||
RUN mkdir db-benchmark/datafusion \ | ||
&& cp ../arrow-datafusion/benchmarks/db-benchmark/groupby-datafusion.py db-benchmark/datafusion \ | ||
&& cp ../arrow-datafusion/benchmarks/db-benchmark/join-datafusion.py db-benchmark/datafusion \ | ||
&& cp ../arrow-datafusion/benchmarks/db-benchmark/run-bench.sh db-benchmark/ \ | ||
&& chmod +x db-benchmark/run-bench.sh | ||
|
||
WORKDIR /db-benchmark | ||
|
||
RUN ls && ls -al data/ | ||
|
||
ENTRYPOINT ./run-bench.sh |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
#!/usr/bin/env python | ||
|
||
print("# groupby-datafusion.py", flush=True) | ||
|
||
import os | ||
import gc | ||
import timeit | ||
import datafusion as df | ||
from datafusion import functions as f | ||
from datafusion import col | ||
from pyarrow import csv as pacsv | ||
|
||
# exec(open("./_helpers/helpers.py").read()) | ||
|
||
def ans_shape(batches): | ||
rows, cols = 0, 0 | ||
for batch in batches: | ||
rows += batch.num_rows | ||
if cols == 0: | ||
cols = batch.num_columns | ||
else: | ||
assert(cols == batch.num_columns) | ||
|
||
return rows, cols | ||
|
||
# ver = df.__version__ | ||
ver = "7.0.0" | ||
git = "" | ||
task = "groupby" | ||
solution = "datafusion" | ||
fun = ".groupby" | ||
cache = "TRUE" | ||
on_disk = "FALSE" | ||
|
||
data_name = os.environ["SRC_DATANAME"] | ||
src_grp = os.path.join("data", data_name + ".csv") | ||
print("loading dataset %s" % src_grp, flush=True) | ||
|
||
data = pacsv.read_csv(src_grp, convert_options=pacsv.ConvertOptions(auto_dict_encode=True)) | ||
print("dataset loaded") | ||
|
||
ctx = df.ExecutionContext() | ||
ctx.register_record_batches("x", [data.to_batches()]) | ||
print("registered record batches") | ||
# cols = ctx.sql("SHOW columns from x") | ||
# ans.show() | ||
|
||
in_rows = data.num_rows | ||
# print(in_rows, flush=True) | ||
|
||
task_init = timeit.default_timer() | ||
|
||
question = "sum v1 by id1" # q1 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id1, SUM(v1) AS v1 FROM x GROUP BY id1").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q1: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("v1"))]).collect()[0].column(0)[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "sum v1 by id1:id2" # q2 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id1, id2, SUM(v1) AS v1 FROM x GROUP BY id1, id2").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q2: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("v1"))]).collect()[0].column(0)[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "sum v1 mean v3 by id3" # q3 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id3, SUM(v1) AS v1, AVG(v3) AS v3 FROM x GROUP BY id3").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q3: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "mean v1:v3 by id4" # q4 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id4, AVG(v1) AS v1, AVG(v2) AS v2, AVG(v3) AS v3 FROM x GROUP BY id4").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q4: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v2")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "sum v1:v3 by id6" # q5 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id6, SUM(v1) AS v1, SUM(v2) AS v2, SUM(v3) AS v3 FROM x GROUP BY id6").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q5: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v2")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "median v3 sd v3 by id4 id5" # q6 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id4, id5, approx_percentile_cont(v3, .5) AS median_v3, stddev(v3) AS stddev_v3 FROM x GROUP BY id4, id5").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q6: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("median_v3")), f.sum(col("stddev_v3"))]).collect()[0].to_pandas().to_numpy()[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "max v1 - min v2 by id3" # q7 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id3, MAX(v1) - MIN(v2) AS range_v1_v2 FROM x GROUP BY id3").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q7: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("range_v1_v2"))]).collect()[0].column(0)[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "largest two v3 by id6" # q8 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id6, v3 from (SELECT id6, v3, row_number() OVER (PARTITION BY id6 ORDER BY v3 DESC) AS row FROM x) t WHERE row <= 2").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q8: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("v3"))]).collect()[0].column(0)[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "regression v1 v2 by id2 id4" # q9 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT corr(v1, v2) as corr FROM x GROUP BY id2, id4").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q9: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("corr"))]).collect()[0].column(0)[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
question = "sum v3 count by id1:id6" # q10 | ||
gc.collect() | ||
t_start = timeit.default_timer() | ||
ans = ctx.sql("SELECT id1, id2, id3, id4, id5, id6, SUM(v3) as v3, COUNT(*) AS cnt FROM x GROUP BY id1, id2, id3, id4, id5, id6").collect() | ||
shape = ans_shape(ans) | ||
# print(shape, flush=True) | ||
t = timeit.default_timer() - t_start | ||
print(f"q10: {t}") | ||
# m = memory_usage() | ||
t_start = timeit.default_timer() | ||
df = ctx.create_dataframe([ans]) | ||
chk = df.aggregate([], [f.sum(col("v3")), f.sum(col("cnt"))]).collect()[0].to_pandas().to_numpy()[0] | ||
chkt = timeit.default_timer() - t_start | ||
# write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) | ||
del ans | ||
gc.collect() | ||
|
||
print("grouping finished, took %0.fs" % (timeit.default_timer() - task_init), flush=True) | ||
|
||
exit(0) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
would be good to clone a particular tag/commit to make this more reproducible.