个人博客: ShawnDong98.github.io
这里是个人学习生成模型时的代码实现。
大部分代码只包含论文复现所需的核心内容,不包含其他内容,并不考虑代码的易用性, 目的是帮助更好地理解论文。
- GAN:Generative adversarial nets
- DCGAN:Unsupervised representation learning with deep convolutional generative adversarial networks
- WGAN:Wasserstein gan
- VAE:Auto-encoding variational bayes
- CGAN:Conditional Generative Adversarial Nets
- CVAE:Learning structured output representation using deep conditional generative models
- VAE-GAN:Autoencoding beyond pixels using a learned similarity metric
- WGAN-GP:Improved training of wasserstein gans
- AdaIN:Arbitrary style transfer in real-time with adaptive instance normalization
- PGGAN: PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION
- StyleGAN:A Style-Based Generator Architecture for Generative Adversarial Networks
- SAGAN:Self-Attention Generative Adversarial Networks
- pytorch实现GAN
- PyTorch-GAN/implementations/dcgan
- PyTorch-GAN/implementations/wgan/wgan.py
- Pytorch入门之VAE
- PyTorch-GAN/implementations/cgan/cgan.py
- timbmg/VAE-CVAE-MNIST
- Pytorch-VAE-GAN/blob/master/VAE-GAN.ipynb
- wgan-gp/gan_cifar10.py
- naoto0804/pytorch-AdaIN
- akanimax/pro_gan_pytorch
- rosinality/style-based-gan-pytorch
- heykeetae/Self-Attention-GAN