Skip to content
This repository has been archived by the owner on Oct 9, 2023. It is now read-only.

Commit

Permalink
Fix tabular with no categorical fields (#1144)
Browse files Browse the repository at this point in the history
  • Loading branch information
ethanwharris authored Jan 31, 2022
1 parent 700a9c8 commit 87e683f
Show file tree
Hide file tree
Showing 4 changed files with 32 additions and 12 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Fixed a bug where the `labels` property would return `None` when using `ObjectDetectionData.from_fiftyone` ([#1136](https://github.com/PyTorchLightning/lightning-flash/pull/1136))

- Fixed a bug where `TabularData` would not work correctly with no categorical variables ([#1144](https://github.com/PyTorchLightning/lightning-flash/pull/1144))

### Removed

- Removed the `Seq2SeqData` base class (use `TranslationData` or `SummarizationData` directly) ([#1128](https://github.com/PyTorchLightning/lightning-flash/pull/1128))
Expand Down
4 changes: 2 additions & 2 deletions flash/tabular/input.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,8 +120,8 @@ def preprocess(
num_vars = _to_num_vars_numpy(df, parameters["numerical_fields"])

num_samples = len(df)
cat_vars = np.stack(cat_vars, 1) if len(cat_vars) else np.zeros((num_samples, 0))
num_vars = np.stack(num_vars, 1) if len(num_vars) else np.zeros((num_samples, 0))
cat_vars = np.stack(cat_vars, 1) if len(cat_vars) else np.zeros((num_samples, 0), dtype=np.int64)
num_vars = np.stack(num_vars, 1) if len(num_vars) else np.zeros((num_samples, 0), dtype=np.float32)

return cat_vars, num_vars

Expand Down
19 changes: 14 additions & 5 deletions tests/tabular/classification/test_data_model_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,16 +32,25 @@

@pytest.mark.skipif(not _TABULAR_TESTING, reason="tabular libraries aren't installed.")
@pytest.mark.parametrize(
"backbone", ["tabnet", "tabtransformer", "fttransformer", "autoint", "node", "category_embedding"]
"backbone,fields",
[
("tabnet", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("tabtransformer", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("fttransformer", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("autoint", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("node", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("category_embedding", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
# No categorical / numerical fields
("tabnet", {"categorical_fields": ["category"]}),
("tabnet", {"numerical_fields": ["scalar_a", "scalar_b"]}),
],
)
def test_classification(backbone, tmpdir):

def test_classification(backbone, fields, tmpdir):
train_data_frame = TEST_DF_1.copy()
val_data_frame = TEST_DF_1.copy()
test_data_frame = TEST_DF_1.copy()
data = TabularClassificationData.from_data_frame(
categorical_fields=["category"],
numerical_fields=["scalar_a", "scalar_b"],
**fields,
target_fields="label",
train_data_frame=train_data_frame,
val_data_frame=val_data_frame,
Expand Down
19 changes: 14 additions & 5 deletions tests/tabular/regression/test_data_model_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,16 +32,25 @@

@pytest.mark.skipif(not _TABULAR_TESTING, reason="tabular libraries aren't installed.")
@pytest.mark.parametrize(
"backbone", ["tabnet", "tabtransformer", "fttransformer", "autoint", "node", "category_embedding"]
"backbone,fields",
[
("tabnet", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("tabtransformer", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("fttransformer", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("autoint", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("node", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
("category_embedding", {"categorical_fields": ["category"], "numerical_fields": ["scalar_a", "scalar_b"]}),
# No categorical / numerical fields
("tabnet", {"categorical_fields": ["category"]}),
("tabnet", {"numerical_fields": ["scalar_a", "scalar_b"]}),
],
)
def test_regression(backbone, tmpdir):

def test_regression(backbone, fields, tmpdir):
train_data_frame = TEST_DF_1.copy()
val_data_frame = TEST_DF_1.copy()
test_data_frame = TEST_DF_1.copy()
data = TabularRegressionData.from_data_frame(
categorical_fields=["category"],
numerical_fields=["scalar_a", "scalar_b"],
**fields,
target_field="label",
train_data_frame=train_data_frame,
val_data_frame=val_data_frame,
Expand Down

0 comments on commit 87e683f

Please sign in to comment.