-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
propagated changes for new CodeItem class
- Loading branch information
Matteo Omenetti [email protected]
authored and
Matteo Omenetti [email protected]
committed
Jan 15, 2025
1 parent
57fc28d
commit 412e4c9
Showing
5 changed files
with
178 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
import logging | ||
from pathlib import Path | ||
from typing import Any, Iterable, Literal | ||
|
||
from docling_core.types.doc import ( | ||
DoclingDocument, | ||
NodeItem, | ||
TextItem, | ||
) | ||
from enum import Enum | ||
|
||
from pydantic import BaseModel | ||
|
||
from docling.datamodel.base_models import InputFormat | ||
from docling.datamodel.pipeline_options import AcceleratorOptions, PdfPipelineOptions | ||
from docling.document_converter import DocumentConverter, PdfFormatOption | ||
from docling.models.base_model import BaseEnrichmentModel | ||
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline | ||
|
||
from docling_ibm_models.code_formula_model.code_formula_predictor import ( | ||
CodeFormulaPredictor, | ||
) | ||
|
||
from docling.datamodel.settings import settings | ||
|
||
# TODO: remove this. Imported so that the models are registered | ||
from docling_ibm_models.code_formula_model.models.vary_opt import * | ||
from docling_ibm_models.code_formula_model.models.vary_opt_image_processor import * | ||
|
||
|
||
class CodeFormulaMode(str, Enum): | ||
"""Modes for the CodeFormula model.""" | ||
|
||
CODE = "code" | ||
FORMULA = "formula" | ||
CODE_FORMULA = "code_formula" | ||
|
||
|
||
class CodeFormulaModelOptions(BaseModel): | ||
kind: Literal["code_formula"] = "code_formula" | ||
|
||
mode: CodeFormulaMode = CodeFormulaMode.CODE_FORMULA | ||
|
||
|
||
class CodeFormulaModel(BaseEnrichmentModel): | ||
|
||
def __init__( | ||
self, | ||
enabled: bool, | ||
artifacts_path: Path, | ||
accelerator_options: AcceleratorOptions, | ||
code_formula_options: CodeFormulaModelOptions, | ||
): | ||
"""Init the CodeFormulaModel. | ||
Args: | ||
enabled (bool): True if the model is enabled, False othewise. | ||
""" | ||
self.enabled = enabled | ||
self.mode = code_formula_options.mode | ||
|
||
self.code_formula_model = CodeFormulaPredictor( | ||
artifacts_path=artifacts_path, | ||
device=accelerator_options.device, | ||
num_threads=accelerator_options.num_threads, | ||
) | ||
|
||
def is_processable(self, doc: DoclingDocument, element: NodeItem) -> bool: | ||
return ( | ||
self.enabled | ||
and isinstance(element, TextItem) | ||
and ( | ||
( | ||
element.label == "code" | ||
and ( | ||
CodeFormulaMode.CODE | ||
or self.mode == CodeFormulaMode.CODE_FORMULA | ||
) | ||
) | ||
or ( | ||
element.label == "formula" | ||
and ( | ||
self.mode == CodeFormulaMode.FORMULA | ||
or self.mode == CodeFormulaMode.CODE_FORMULA | ||
) | ||
) | ||
) | ||
) | ||
|
||
def __call__( | ||
self, doc: DoclingDocument, element_batch: Iterable[NodeItem] | ||
) -> Iterable[Any]: | ||
print(len(element_batch)) | ||
if not self.enabled: | ||
return | ||
|
||
# ! TODO: batch size missing | ||
images = [el.get_image(doc) for el in element_batch] | ||
labels = [el.label for el in element_batch] | ||
|
||
outputs = self.code_formula_model.predict(images, labels) | ||
# for output in outputs: | ||
# print(output) | ||
# print("\n\n\n\n\n") | ||
|
||
for element, output in zip(element_batch, outputs): | ||
element.text = output | ||
|
||
yield element_batch | ||
|
||
|
||
class CodeFormulaPipelineOptions(PdfPipelineOptions): | ||
do_code_formula_enrichment: bool = True | ||
|
||
class CodeFormulaPipeline(StandardPdfPipeline): | ||
|
||
def __init__(self, pipeline_options: CodeFormulaPipelineOptions): | ||
super().__init__(pipeline_options) | ||
self.pipeline_options: CodeFormulaPipelineOptions | ||
|
||
self.enrichment_pipe = [ | ||
CodeFormulaModel( | ||
enabled=pipeline_options.do_code_formula_enrichment, | ||
artifacts_path="/dccstor/doc_fig_class/DocFM-Vision-Pretrainer/Vary-master/checkpoints_code_equation_model/best_run", | ||
accelerator_options=AcceleratorOptions(device="cpu"), | ||
code_formula_options=CodeFormulaModelOptions(), | ||
) | ||
] | ||
|
||
@classmethod | ||
def get_default_options(cls) -> CodeFormulaPipelineOptions: | ||
return CodeFormulaPipelineOptions() | ||
|
||
|
||
def main(): | ||
logging.basicConfig(level=logging.INFO) | ||
|
||
# input_doc_path = Path("./tests/data/code_and_formulas.pdf") | ||
input_doc_path = Path( | ||
"/dccstor/doc_fig_class/docling-ibm/test/data/pdf/code_and_formulas.pdf" | ||
) | ||
|
||
settings.debug.visualize_raw_layout = True | ||
settings.debug.visualize_layout = True | ||
settings.debug.visualize_ocr = True | ||
settings.debug.visualize_tables = True | ||
|
||
pipeline_options = CodeFormulaPipelineOptions() | ||
pipeline_options.images_scale = 2.0 | ||
|
||
pipeline_options.generate_page_images = True | ||
pipeline_options.generate_picture_images = True | ||
|
||
doc_converter = DocumentConverter( | ||
format_options={ | ||
InputFormat.PDF: PdfFormatOption( | ||
pipeline_cls=CodeFormulaPipeline, | ||
pipeline_options=pipeline_options, | ||
) | ||
} | ||
) | ||
result = doc_converter.convert(input_doc_path) | ||
|
||
for element, _level in result.document.iterate_items(): | ||
if isinstance(element, TextItem) and (element.label == "code" or element.label == "formula"): | ||
print( | ||
f"The model populated the `text` portion of the TextElement {element.self_ref}:\n{element.text}\n\n\n\n\n" | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Binary file not shown.