-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
59 lines (50 loc) · 1.95 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
import os
import torch.utils.data as data
import pandas as pd
import random
from PIL import Image, ImageFile
import math
from util import *
ImageFile.LOAD_TRUNCATED_IAMGES = True
class RafDataset(data.Dataset):
def __init__(self, args, phase, basic_aug=True, transform=None):
self.raf_path = args.raf_path
self.phase = phase
self.basic_aug = basic_aug
self.transform = transform
name_c = 0
label_c = 1
if phase == 'train':
df_train = pd.read_csv(args.train_label_path, sep=' ', header=None)
dataset = df_train
print(dataset.groupby([1]).size())
else:
df_test = pd.read_csv(args.test_label_path, sep=' ', header=None)
dataset = df_test
print(dataset.groupby([1]).size())
# notice the raf-db label starts from 1 while label of other dataset starts from 0
self.label = dataset.iloc[:, label_c].values - 1
images_names = dataset.iloc[:, name_c].values
self.aug_func = [filp_image, add_g]
self.file_paths = []
for f in images_names:
f = f.split(".")[0]
f += '_aligned.jpg'
file_name = os.path.join(self.raf_path, 'Image/aligned', f)
self.file_paths.append(file_name)
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
label = self.label[idx]
image = cv2.imread(self.file_paths[idx])
image = image[:, :, ::-1]
if self.phase == 'train':
if self.transform[0] is not None:
image1 = self.transform[0](image)
image2 = self.transform[1](image)
return image1, image2, label, idx
else:
if self.transform is not None:
image = self.transform(image)
return image, label, idx