-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmx_asyn.py
408 lines (338 loc) · 13.4 KB
/
mx_asyn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# -*- coding: utf-8 -*-
"""
Teaching a machine to play an Atari game (Pacman by default) by implementing
a 1-step Q-learning with TFLearn, TensorFlow and OpenAI gym environment. The
algorithm is described in "Asynchronous Methods for Deep Reinforcement Learning"
paper. OpenAI's gym environment is used here for providing the Atari game
environment for handling games logic and states. This example is originally
adapted from Corey Lynch's repo (url below).
Requirements:
- gym environment (pip install gym)
- gym Atari environment (pip install gym[atari])
References:
- Asynchronous Methods for Deep Reinforcement Learning. Mnih et al, 2015.
Links:
- Paper: http://arxiv.org/pdf/1602.01783v1.pdf
- OpenAI's gym: https://gym.openai.com/
- Original Repo: https://github.com/coreylynch/async-rl
"""
from __future__ import division, print_function, absolute_import
import threading
import random
import numpy as np
import time
from skimage.transform import resize
from skimage.color import rgb2gray
from collections import deque
import gym
import mxnet as mx
# Change that value to test instead of train
testing = False
# Model path (to load when testing)
# Atari game to learn
# You can also try: 'Breakout-v0', 'Pong-v0', 'SpaceInvaders-v0', ...
game = 'Breakout-v0'
# Learning threads
n_threads = 16
f_log = open(game + '.txt', 'w')
# =============================
# Training Parameters
# =============================
# Max training steps
TMAX = 80000000
# Current training step
T = 0
# Consecutive screen frames when performing training
action_repeat = 4
# Async gradient update frequency of each learning thread
I_AsyncUpdate = 32
# Timestep to reset the target network
I_target = 40000
# Learning rate
learning_rate = 0.001
# Reward discount rate
gamma = 0.99
# Number of timesteps to anneal epsilon
anneal_epsilon_timesteps = 400000
num_actions = 0
clip_delta = 1.0
# =============================
# Utils Parameters
# =============================
# Display or not gym evironment screens
show_training = False
# Directory for storing tensorboard summaries
checkpoint_interval = 200000
# Number of episodes to run gym evaluation
num_eval_episodes = 100
ctx = mx.gpu(0)
input_shape = (I_AsyncUpdate, 4, 84, 84)
input_scale = 255.0
lock = threading.Lock()
policy_exe = None
target_exe = None
loss_exe = None
loss = 0
s_batch = []
a_batch = []
t_batch = []
r_batch = []
next_batch = []
# =============================
# TFLearn Deep Q Network
# =============================
class DQNInitializer(mx.initializer.Uniform):
def __init__(self):
mx.initializer.Uniform.__init__(self)
def _init_bias(self, _, arr):
arr[:] = .1
def _init_default(self, name, _):
pass
def copy_weights(from_exe, to_exe):
for k in from_exe.arg_dict:
if k.endswith('weight') or k.endswith('bias'):
from_exe.arg_dict[k].copyto(to_exe.arg_dict[k])
def share_weights(source_exe, to_exe):
for k in source_exe.arg_dict:
if k.endswith('weight') or k.endswith('bias'):
to_exe.arg_dict[k] = source_exe.arg_dict[k]
def init_exe(executor, initializer):
for k, v in executor.arg_dict.items():
initializer(k, v)
def update_weights(executor, updater):
for ind, k in enumerate(executor.arg_dict):
if k.endswith('weight') or k.endswith('bias'):
updater(index=ind, grad=executor.grad_dict[k], weight=executor.arg_dict[k])
def build_nips_network(num_actions=20):
data = mx.sym.Variable("data")
conv1 = mx.sym.Convolution(data=data, num_filter=16, stride=(4, 4),
kernel=(8, 8), name="conv1")
relu1 = mx.sym.Activation(data=conv1, act_type='relu', name="relu1")
conv2 = mx.sym.Convolution(data=relu1, num_filter=32, stride=(2, 2),
kernel=(4, 4), name="conv2")
relu2 = mx.sym.Activation(data=conv2, act_type='relu', name="relu2")
fc3 = mx.sym.FullyConnected(data=relu2, name="fc4", num_hidden=257)
relu3 = mx.sym.Activation(data=fc3, act_type='relu', name="relu4")
fc4 = mx.sym.FullyConnected(data=relu3, name="fc5", num_hidden=num_actions)
return fc4
def build_graphs(num_actions=20):
q_values = build_nips_network(num_actions)
target_q_values = mx.sym.Variable("target")
action_mask = mx.sym.Variable("action")
out_q_values = mx.sym.sum(q_values * action_mask, axis=1)
q_diff = out_q_values - target_q_values
loss = mx.sym.MakeLoss(data=mx.sym.square(q_diff))
group = mx.sym.Group([mx.sym.BlockGrad(q_diff), loss])
loss_exe = group.simple_bind(ctx=ctx, data=input_shape, grad_req='write')
policy_exe = q_values.simple_bind(ctx=ctx, data=(1, ) + input_shape[1:], grad_req='null')
target_exe = q_values.simple_bind(ctx=ctx, data=input_shape, grad_req='null')
return loss_exe, policy_exe, target_exe
# =============================
# ATARI Environment Wrapper
# =============================
class AtariEnvironment(object):
"""
Small wrapper for gym atari environments.
Responsible for preprocessing screens and holding on to a screen buffer
of size action_repeat from which environment state is constructed.
"""
def __init__(self, gym_env, action_repeat):
self.env = gym_env
self.action_repeat = action_repeat
self.start_lives = self.env.ale.lives()
# Agent available actions, such as LEFT, RIGHT, NOOP, etc...
self.gym_actions = range(gym_env.action_space.n)
# Screen buffer of size action_repeat to be able to build
# state arrays of size [1, action_repeat, 84, 84]
self.state_buffer = deque()
def get_initial_state(self):
"""
Resets the atari game, clears the state buffer.
"""
# Clear the state buffer
self.state_buffer = deque()
x_t = self.env.reset()
x_t = self.get_preprocessed_frame(x_t)
s_t = np.stack([x_t for i in range(self.action_repeat)], axis=0)
for i in range(self.action_repeat-1):
self.state_buffer.append(x_t)
return s_t
def get_preprocessed_frame(self, observation):
"""
0) Atari frames: 210 x 160
1) Get image grayscale
2) Rescale image 110 x 84
3) Crop center 84 x 84 (you can crop top/bottom according to the game)
"""
return resize(rgb2gray(observation), (84, 84))
def step(self, action_index):
"""
Excecutes an action in the gym environment.
Builds current state (concatenation of action_repeat-1 previous
frames and current one). Pops oldest frame, adds current frame to
the state buffer. Returns current state.
"""
for _ in range(action_repeat):
x_t1, r_t, terminal, info = self.env.step(self.gym_actions[action_index])
x_t1 = self.get_preprocessed_frame(x_t1)
previous_frames = np.array(self.state_buffer)
s_t1 = np.empty((self.action_repeat, 84, 84))
s_t1[:self.action_repeat-1, :] = previous_frames
s_t1[self.action_repeat-1] = x_t1
# Pop the oldest frame, add the current frame to the queue
self.state_buffer.popleft()
self.state_buffer.append(x_t1)
terminal = terminal or (self.env.ale.lives() < self.start_lives)
return s_t1, r_t, terminal, info
# =============================
# 1-step Q-Learning
# =============================
def sample_final_epsilon():
"""
Sample a final epsilon value to anneal towards from a distribution.
These values are specified in section 5.1 of http://arxiv.org/pdf/1602.01783v1.pdf
"""
final_epsilons = np.array([.1, .01, .5])
probabilities = np.array([0.4, 0.3, 0.3])
return np.random.choice(final_epsilons, 1, p=list(probabilities))[0]
def actor_learner_thread(thread_id, env):
"""
Actor-learner thread implementing asynchronous one-step Q-learning, as specified
in algorithm 1 here: http://arxiv.org/pdf/1602.01783v1.pdf.
"""
global TMAX, T, num_actions, loss
global s_batch, a_batch, r_batch, t_batch, next_batch
# Wrap env with AtariEnvironment helper class
env = AtariEnvironment(gym_env=env,
action_repeat=action_repeat)
final_epsilon = sample_final_epsilon()
initial_epsilon = 1.0
epsilon = 1.0
lock.acquire()
print("Thread " + str(thread_id) + " - Final epsilon: " + str(final_epsilon))
lock.release()
while T < TMAX:
# Get initial game observation
s_t = env.get_initial_state()
ep_reward = 0
episode_ave_max_q = 0
ep_t = 0
while True:
# Forward the deep q network, get Q(s,a) values
st = mx.nd.array([s_t], ctx=ctx) / input_scale
lock.acquire()
readout_t = policy_exe.forward(data=st)[0].asnumpy()
lock.release()
# Choose next action based on e-greedy policy
if random.random() <= epsilon:
action_index = random.randrange(num_actions)
else:
action_index = np.argmax(readout_t)
# Scale down epsilon
if epsilon > final_epsilon:
epsilon -= (initial_epsilon - final_epsilon) / anneal_epsilon_timesteps
# Gym excecutes action in game environment on behalf of actor-learner
s_t1, r_t, terminal, info = env.step(action_index)
clipped_r_t = np.clip(r_t, -1, 1)
lock.acquire()
s_batch.append(s_t)
a_batch.append(action_index)
r_batch.append(clipped_r_t)
t_batch.append(terminal)
next_batch.append(s_t1)
lock.release()
s_t = s_t1
T += 1
ep_t += 1
ep_reward += r_t
episode_ave_max_q += np.max(readout_t)
# Print end of episode stats
if terminal:
info_str = "%s: Thread %2d | Step %8d/%8d | Reward %3d | Qmax %.4f | Loss %.3f | Epsilon %.4f" % (game, thread_id, ep_t, T, ep_reward, episode_ave_max_q/ep_t, loss, epsilon)
f_log.write(info_str + '\n')
print(info_str)
break
def actor_trainer_thread(updater):
global s_batch, a_batch, r_batch, t_batch, next_batch
global T, TMAX, loss
global policy_exe, target_exe, loss_exe
now = time.time()
while T < TMAX:
if 100 > T % I_target >= 0:
str = "Speed: %4.3f samples/sec" % (I_target/(time.time() - now))
f_log.write(str + '\n')
now = time.time()
copy_weights(loss_exe, target_exe)
# Optionally update online network
if len(s_batch) >= I_AsyncUpdate:
states = mx.nd.array(s_batch[:I_AsyncUpdate], ctx=ctx) / input_scale
actions = mx.nd.array(a_batch[:I_AsyncUpdate], ctx=ctx)
at_encoded = mx.nd.zeros((I_AsyncUpdate, num_actions), ctx=ctx)
mx.nd.onehot_encode(actions, at_encoded)
rewards = mx.nd.array(r_batch[:I_AsyncUpdate], ctx=ctx)
terminals = mx.nd.array(t_batch[:I_AsyncUpdate], ctx=ctx)
next_states = mx.nd.array(next_batch[:I_AsyncUpdate], ctx=ctx) / input_scale
next_q_values = target_exe.forward(data=next_states)[0]
target_q_values = rewards + mx.nd.choose_element_0index(next_q_values, mx.nd.argmax_channel(next_q_values)) * (1.0 - terminals) * gamma
exe_out = loss_exe.forward(is_train=True, data=states, target=target_q_values, action=at_encoded)
out_grad = mx.nd.clip(exe_out[0], -clip_delta, clip_delta)
loss = mx.nd.sum(exe_out[1]).asnumpy()
loss_exe.backward([out_grad])
update_weights(loss_exe, updater)
lock.acquire()
copy_weights(loss_exe, policy_exe)
s_batch = []
a_batch = []
t_batch = []
r_batch = []
next_batch = []
lock.release()
# Save model progress
if T % checkpoint_interval == 0:
filename = game + ".params"
mx.nd.save(filename, policy_exe.arg_dict)
def get_num_actions():
"""
Returns the number of possible actions for the given atari game
"""
# Figure out number of actions from gym env
env = gym.make(game)
num_actions = env.action_space.n
return num_actions
def train():
"""
Train a model.
"""
global policy_exe, target_exe, loss_exe
global num_actions, T, TMAX
num_actions = get_num_actions()
loss_exe, policy_exe, target_exe = build_graphs(num_actions)
# Set up game environments (one per thread)
envs = [gym.make(game) for _ in range(n_threads)]
optimizer = mx.optimizer.create(name='RMSProp', learning_rate=0.001, gamma2=0.0)
updater = mx.optimizer.get_updater(optimizer)
initializer = DQNInitializer()
init_exe(loss_exe, initializer)
copy_weights(loss_exe, target_exe)
copy_weights(loss_exe, policy_exe)
# Start n_threads actor-learner training threads
threads = []
for thread_id in range(n_threads):
threads.append(threading.Thread(target=actor_learner_thread,
args=(thread_id, envs[thread_id])))
threads.append(threading.Thread(target=actor_trainer_thread, args=(updater, )))
for t in threads:
t.start()
time.sleep(0.01)
# Show the agents training and write summary statistics
now = time.time()
while T < TMAX:
if show_training:
for env in envs:
env.render()
for t in threads:
t.join()
def main():
train()
if __name__ == "__main__":
main()