-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRUN.py
164 lines (134 loc) · 5.19 KB
/
RUN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from torch.autograd import Variable
from model import DLinear
import random
import pandas as pd
import numpy as np
import heapq
import copy
import os
import sys
from models.losses import hierarchical_contrastive_loss
from data_provider.data_factory import data_provider
from tqdm import trange
def pre_train(train_data, train_loader, model, optimizer, args, target_idx):
train_steps = len(train_loader)
model.train()
total_batches = len(train_loader)
for i, (batch_x, batch_y) in enumerate(train_loader):
optimizer.zero_grad()
batch_x = batch_x.float().to(args.cuda)
ts_l = batch_x.size(1)
crop_l = 32
crop_left = np.random.randint(ts_l - crop_l + 1)
crop_right = crop_left + crop_l
crop_eleft = np.random.randint(crop_left + 1)
crop_eright = np.random.randint(low=crop_right, high=ts_l + 1)
crop_offset = np.random.randint(low=-crop_eleft, high=ts_l - crop_eright + 1, size=batch_x.size(0))
model.setProj(True)
out = model(take_per_row(batch_x, crop_offset + crop_eleft, 32))
p1 = out[:, -crop_l:]
out = model(take_per_row(batch_x, crop_offset + crop_left, 32))
p2 = out[:, :crop_l]
model.setProj(False)
out = model(take_per_row(batch_x, crop_offset + crop_left, 32))
z1 = out[:, :crop_l]
out = model(take_per_row(batch_x, crop_offset + crop_eleft, 32))
z2 = out[:, -crop_l:]
loss = (hierarchical_contrastive_loss(p1,z2,temporal_unit=0)
+ hierarchical_contrastive_loss(p2,z1,temporal_unit=0)) * 0.5
loss.backward()
optimizer.step()
return loss
def train(train_data, train_loader, model, optimizer, args, target_idx):
train_steps = len(train_loader)
model.train()
for i, (batch_x, batch_y) in enumerate(train_loader):
optimizer.zero_grad()
batch_x = batch_x.float().to(args.cuda)
batch_y = batch_y.float().to(args.cuda)
outputs = model(batch_x)
f_dim = -1
outputs = outputs[:, -1:, f_dim:]
batch_y = batch_y[:, -1:, target_idx].to(args.cuda)
loss = F.mse_loss(outputs, batch_y)
loss.backward()
optimizer.step()
attention = model.fs_attention
return attention.data, loss
def test(test_data, test_loader, model, optimizer, args, target_idx):
test_steps = len(test_loader)
model.eval()
with torch.no_grad():
for i, (batch_x, batch_y) in enumerate(test_loader):
optimizer.zero_grad()
batch_x = batch_x.float().to(args.cuda)
batch_y = batch_y.float().to(args.cuda)
outputs = model(batch_x)
f_dim = -1
outputs = outputs[:, -1:, f_dim:]
batch_y = batch_y[:, -1:, target_idx].to(args.cuda)
loss = F.mse_loss(outputs, batch_y)
return loss
def take_per_row(A, indx, num_elem):
all_indx = indx[:,None] + np.arange(num_elem)
return A[torch.arange(all_indx.shape[0])[:,None], all_indx]
def GraphConstruct(target, cuda, epochs, lr, optimizername, file, args):
train_data, train_loader = data_provider(args, flag='train')
test_data, test_loader = data_provider(args, flag='test')
df_tmp = pd.read_csv(file)
df_tmp.drop(df_tmp.columns[0], axis=1, inplace=True)
targetidx = df_tmp.columns.get_loc(target)
window_size = 32
layers = 128
model = DLinear(window_size, layers, len(df_tmp.columns))
model.to(args.cuda)
optimizer = getattr(optim, optimizername)(model.parameters(), lr=lr)
model.setPretrain(True)
pbar = trange(1, epochs+1)
for ep in pbar:
pretrain_loss = pre_train(train_data, train_loader, model, optimizer, args, targetidx)
pbar.set_postfix(pretrain_loss=pretrain_loss)
model.setPretrain(False)
pbar = trange(1, epochs+1)
for ep in pbar:
scores, train_loss = train(train_data, train_loader, model, optimizer, args, targetidx)
model.setTest(True)
test_loss = test(test_data, test_loader, model, optimizer, args, targetidx)
model.setTest(False)
pbar.set_postfix(train_loss=train_loss, test_loss=test_loss)
s = sorted(scores.view(-1).cpu().detach().numpy(), reverse=True)
indices = np.argsort(-1 *scores.view(-1).cpu().detach().numpy())
if len(s)<=5:
potentials = []
for i in indices:
if scores[i] > 1:
potentials.append(i)
else:
potentials = []
gaps = []
for i in range(len(s)-1):
if s[i] < 1:
break
gap = s[i]-s[i+1]
gaps.append(gap)
sortgaps = sorted(gaps, reverse=True)
for i in range(0, len(gaps)):
largestgap = sortgaps[i]
index = gaps.index(largestgap)
ind = -1
if index<((len(s)-1)/2):
if index>0:
ind=index
break
if ind < 0:
ind = 0
potentials = indices[ : ind+1].tolist()
edge_to_target = dict()
for v in potentials:
edge_to_target[(targetidx, v)]=0
return edge_to_target