-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathinference.py
196 lines (154 loc) · 6.24 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import argparse
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline
from templates.templates import inference_templates
import math
"""
Inference script for generating batch results
"""
def parse_args():
parser = argparse.ArgumentParser(description="")
parser.add_argument(
"--prompt",
type=str,
help="input a single text prompt for generation",
)
parser.add_argument(
"--template_name",
type=str,
help="select a batch of text prompts from templates.py for generation",
)
parser.add_argument(
"--model_id",
type=str,
required=True,
help="absolute path to the folder that contains the trained results",
)
parser.add_argument(
"--placeholder_string",
type=str,
default="<R>",
help="place holder string of the relation prompt",
)
parser.add_argument(
"--num_samples",
type=int,
default=10,
help="number of samples to generate for each prompt",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=7.5,
help="scale for classifier-free guidance",
)
parser.add_argument(
"--only_load_embeds",
action="store_true",
default=False,
help="If specified, the experiment folder only contains the relation prompt, but does not contain the entire folder",
)
args = parser.parse_args()
return args
def make_image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def inference_fn(
examples: list,
prompt: str,
num_samples: int,
guidance_scale: float,
ddim_steps: int,
) -> Image.Image:
import pathlib
"""
same functionality as main(), but for gradio demo usage,
so slightly modified the input and output format
"""
# select model_id
model_id = pathlib.Path(examples[0]).stem
# create inference pipeline
if torch.cuda.is_available():
pipe = StableDiffusionPipeline.from_pretrained(os.path.join('experiments', model_id),torch_dtype=torch.float16).to('cuda')
else:
pipe = StableDiffusionPipeline.from_pretrained(os.path.join('experiments', model_id)).to('cpu')
# single text prompt
if prompt is not None:
prompt_list = [prompt]
else:
prompt_list = []
for prompt in prompt_list:
# insert relation prompt <R>
# prompt = prompt.lower().replace("<r>", "<R>").format(placeholder_string)
prompt = prompt.lower().replace("<r>", "<R>").format("<R>")
# batch generation
images = pipe(prompt, num_inference_steps=ddim_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_samples).images
# save a grid of images
image_grid = make_image_grid(images, rows=2, cols=math.ceil(num_samples/2))
print(image_grid)
return image_grid
def main():
args = parse_args()
# create inference pipeline
if args.only_load_embeds:
print('load relation prompt only')
embed_path = os.path.join(args.model_id, 'learned_embeds.bin')
learned_embeds = torch.load(embed_path)
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float16).to("cuda")
text_encoder = pipe.text_encoder
tokenizer = pipe.tokenizer
# keep original embeddings as reference
orig_embeds_params = text_encoder.get_input_embeddings().weight.data.clone()
# Add the placeholder token in tokenizer
tokenizer.add_tokens(args.placeholder_string)
text_encoder.get_input_embeddings().weight.data = torch.cat((orig_embeds_params, orig_embeds_params[0:1]))
text_encoder.resize_token_embeddings(len(tokenizer))
# Let's make sure we don't update any embedding weights besides the newly added token
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_string)
index_no_updates = torch.arange(len(tokenizer)) != placeholder_token_id
text_encoder.get_input_embeddings().weight.data[index_no_updates] = orig_embeds_params
text_encoder.get_input_embeddings().weight.data[placeholder_token_id] = learned_embeds[args.placeholder_string]
else:
# now this works
print('load full model')
pipe = StableDiffusionPipeline.from_pretrained(args.model_id,torch_dtype=torch.float16).to("cuda")
# make directory to save images
image_root_folder = os.path.join(args.model_id, 'inference')
os.makedirs(image_root_folder, exist_ok = True)
if args.prompt is None and args.template_name is None:
raise ValueError("please input a single prompt through'--prompt' or select a batch of prompts using '--template_name'.")
# single text prompt
if args.prompt is not None:
prompt_list = [args.prompt]
else:
prompt_list = []
if args.template_name is not None:
# read the selected text prompts for generation
prompt_list.extend(inference_templates[args.template_name])
for prompt in prompt_list:
# insert relation prompt <R>
prompt = prompt.lower().replace("<r>", "<R>").format(args.placeholder_string)
# make sub-folder
image_folder = os.path.join(image_root_folder, prompt, 'samples')
os.makedirs(image_folder, exist_ok = True)
# batch generation
images = pipe(prompt, num_inference_steps=50, guidance_scale=args.guidance_scale, num_images_per_prompt=args.num_samples).images
# save generated images
for idx, image in enumerate(images):
image_name = f"{str(idx).zfill(4)}.png"
image_path = os.path.join(image_folder, image_name)
image.save(image_path)
# save a grid of images
image_grid = make_image_grid(images, rows=2, cols=math.ceil(args.num_samples/2))
image_grid_path = os.path.join(image_root_folder, prompt, f'{prompt}.png')
image_grid.save(image_grid_path)
print(f'saved to {image_grid_path}')
if __name__ == "__main__":
main()