-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvisual.py
70 lines (56 loc) · 2.33 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from __future__ import print_function
import torch
from torch.autograd import Variable
from matplotlib import pyplot as plt
import cv2
import time
import argparse
import sys
from os import path
import warnings
warnings.filterwarnings("ignore")
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
from data import BaseTransform, VOC_CLASSES as labelmap
from ssd import build_ssd
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detection')
parser.add_argument('--weights', default="/home/zigangzhao/bishe/SSD/weights-adjust_anchor/ssd300_car_26000.pth",
type=str, help='Trained state_dict file path')
parser.add_argument('--cuda', default=False, type=bool,
help='Use cuda in live demo')
args = parser.parse_args()
COLORS = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]
FONT = cv2.FONT_HERSHEY_SIMPLEX
def cv2_demo(net, transform):
def predict(frame):
height, width = frame.shape[:2]
x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1)
x = Variable(x.unsqueeze(0))
y = net(x) # forward pass
detections = y.data
# scale each detection back up to the image
scale = torch.Tensor([width, height, width, height])
for i in range(detections.size(1)):
j = 0
while detections[0, i, j, 0] >= 0.5:
score = float(detections[0, i, j, 0])
print(type(score))
pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
cv2.rectangle(frame,
(int(pt[0]), int(pt[1])),
(int(pt[2]), int(pt[3])),
COLORS[i % 3], 2)
cv2.putText(frame, labelmap[i - 1]+'_' + str(score)[:4], (int(pt[0]), int(pt[1])),
FONT, 1, (255, 0, 255), 2, cv2.LINE_AA)
j += 1
return frame
frame = cv2.imread("/home/zigangzhao/bishe/SSD/test_images/6181.jpg")
frame = predict(frame)
IMAGE_SIZE = (12, 8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(frame)
plt.show()
if __name__ == '__main__':
net = build_ssd('test', 300, 2) # initialize SSD
net.load_state_dict(torch.load(args.weights))
transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0))
cv2_demo(net.eval(), transform)