-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfcos3d_simipu_nus_abl_oneten.txt
1255 lines (1250 loc) · 224 KB
/
fcos3d_simipu_nus_abl_oneten.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2021-08-16 16:28:16,966 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.7 (default, May 7 2020, 21:25:33) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM2-32GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
PyTorch: 1.6.0
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
TorchVision: 0.7.0
OpenCV: 4.5.2
MMCV: 1.3.4
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.11.0
MMSegmentation: 0.13.0
MMDetection3D: 0.13.0+b15fc06
------------------------------------------------------------
2021-08-16 16:28:17,974 - mmdet - INFO - Distributed training: True
2021-08-16 16:28:18,830 - mmdet - INFO - Config:
dataset_type = 'NuScenesMonoDataset'
data_root = '/nfs/share_data/nuscenes/'
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
input_modality = dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False)
img_norm_cfg = dict(
mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=True,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]),
dict(
type='Collect3D',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers2d', 'depths'
])
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
'barrier'
],
with_label=False),
dict(type='Collect3D', keys=['img'])
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=8,
train=dict(
type='NuScenesMonoDataset',
data_root='/nfs/share_data/nuscenes/',
ann_file=
'/nfs/share_data/nuscenes/nuscenes_infos_train_mono3d.coco.json',
img_prefix='/nfs/share_data/nuscenes/',
classes=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
],
pipeline=[
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=True,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
'barrier'
]),
dict(
type='Collect3D',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'attr_labels',
'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths'
])
],
modality=dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False),
test_mode=False,
box_type_3d='Camera'),
val=dict(
type='NuScenesMonoDataset',
data_root='/nfs/share_data/nuscenes/',
ann_file='/nfs/share_data/nuscenes/nuscenes_infos_val_mono3d.coco.json',
img_prefix='/nfs/share_data/nuscenes/',
classes=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
],
pipeline=[
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus',
'construction_vehicle', 'bicycle', 'motorcycle',
'pedestrian', 'traffic_cone', 'barrier'
],
with_label=False),
dict(type='Collect3D', keys=['img'])
])
],
modality=dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False),
test_mode=True,
box_type_3d='Camera'),
test=dict(
type='NuScenesMonoDataset',
data_root='/nfs/share_data/nuscenes/',
ann_file='/nfs/share_data/nuscenes/nuscenes_infos_val_mono3d.coco.json',
img_prefix='/nfs/share_data/nuscenes/',
classes=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
],
pipeline=[
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus',
'construction_vehicle', 'bicycle', 'motorcycle',
'pedestrian', 'traffic_cone', 'barrier'
],
with_label=False),
dict(type='Collect3D', keys=['img'])
])
],
modality=dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False),
test_mode=True,
box_type_3d='Camera'))
evaluation = dict(start=10, interval=2)
model = dict(
type='FCOSMono3D',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='SyncBN', requires_grad=True),
norm_eval=False,
style='pytorch',
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
extra_convs_on_inputs=False,
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='FCOSMono3DHead',
num_classes=10,
in_channels=256,
stacked_convs=2,
feat_channels=256,
use_direction_classifier=True,
diff_rad_by_sin=True,
pred_attrs=True,
pred_velo=True,
dir_offset=0.7854,
strides=[8, 16, 32, 64, 128],
group_reg_dims=(2, 1, 3, 1, 2),
cls_branch=(256, ),
reg_branch=((256, ), (256, ), (256, ), (256, ), ()),
dir_branch=(256, ),
attr_branch=(256, ),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_attr=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
norm_on_bbox=True,
centerness_on_reg=True,
center_sampling=True,
conv_bias=True,
dcn_on_last_conv=True),
train_cfg=dict(
allowed_border=0,
code_weight=[1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05],
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=1000,
nms_thr=0.8,
score_thr=0.05,
min_bbox_size=0,
max_per_img=200))
optimizer = dict(
type='SGD',
lr=0.008,
momentum=0.9,
weight_decay=0.0001,
paramwise_cfg=dict(bias_lr_mult=2.0, bias_decay_mult=0.0))
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.3333333333333333,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
checkpoint_config = dict(interval=1)
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = 'nfs/lzy/fcos3d_ablation/oneten'
load_from = 'checkpoints/mono3d_waymo_oneten.pth'
resume_from = None
workflow = [('train', 1)]
total_epochs = 12
gpu_ids = range(0, 8)
2021-08-16 16:28:18,831 - mmdet - INFO - Set random seed to 0, deterministic: False
2021-08-16 16:28:19,366 - mmdet - INFO - Model:
FCOSMono3D(
(backbone): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(neck): FPN(
(lateral_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
)
)
(fpn_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(4): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
)
)
(bbox_head): FCOSMono3DHead(
(loss_cls): FocalLoss()
(loss_bbox): SmoothL1Loss()
(loss_dir): CrossEntropyLoss()
(loss_attr): CrossEntropyLoss()
(cls_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(1): ConvModule(
(conv): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(reg_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(1): ConvModule(
(conv): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_cls_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_cls): Conv2d(256, 10, kernel_size=(1, 1), stride=(1, 1))
(conv_reg_prevs): ModuleList(
(0): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(1): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(2): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(3): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(4): None
)
(conv_regs): ModuleList(
(0): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1))
(4): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
)
(conv_dir_cls_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_dir_cls): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
(conv_attr_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_attr): Conv2d(256, 9, kernel_size=(1, 1), stride=(1, 1))
(conv_centerness_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 64, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_centerness): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))
(scales): ModuleList(
(0): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(1): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(2): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(3): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(4): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
)
(loss_centerness): CrossEntropyLoss()
)
)
2021-08-16 16:28:59,769 - mmdet - INFO - load checkpoint from checkpoints/mono3d_waymo_oneten.pth
2021-08-16 16:28:59,780 - mmdet - INFO - Use load_from_local loader
2021-08-16 16:28:59,905 - mmdet - WARNING - The model and loaded state dict do not match exactly
missing keys in source state_dict: backbone.layer3.0.conv2.conv_offset.weight, backbone.layer3.0.conv2.conv_offset.bias, backbone.layer3.1.conv2.conv_offset.weight, backbone.layer3.1.conv2.conv_offset.bias, backbone.layer3.2.conv2.conv_offset.weight, backbone.layer3.2.conv2.conv_offset.bias, backbone.layer3.3.conv2.conv_offset.weight, backbone.layer3.3.conv2.conv_offset.bias, backbone.layer3.4.conv2.conv_offset.weight, backbone.layer3.4.conv2.conv_offset.bias, backbone.layer3.5.conv2.conv_offset.weight, backbone.layer3.5.conv2.conv_offset.bias, backbone.layer4.0.conv2.conv_offset.weight, backbone.layer4.0.conv2.conv_offset.bias, backbone.layer4.1.conv2.conv_offset.weight, backbone.layer4.1.conv2.conv_offset.bias, backbone.layer4.2.conv2.conv_offset.weight, backbone.layer4.2.conv2.conv_offset.bias, neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.conv.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias, neck.fpn_convs.4.conv.weight, neck.fpn_convs.4.conv.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.conv.bias, bbox_head.cls_convs.0.gn.weight, bbox_head.cls_convs.0.gn.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.conv.bias, bbox_head.cls_convs.1.conv.conv_offset.weight, bbox_head.cls_convs.1.conv.conv_offset.bias, bbox_head.cls_convs.1.gn.weight, bbox_head.cls_convs.1.gn.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.conv.bias, bbox_head.reg_convs.0.gn.weight, bbox_head.reg_convs.0.gn.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.conv.bias, bbox_head.reg_convs.1.conv.conv_offset.weight, bbox_head.reg_convs.1.conv.conv_offset.bias, bbox_head.reg_convs.1.gn.weight, bbox_head.reg_convs.1.gn.bias, bbox_head.conv_cls_prev.0.conv.weight, bbox_head.conv_cls_prev.0.conv.bias, bbox_head.conv_cls_prev.0.gn.weight, bbox_head.conv_cls_prev.0.gn.bias, bbox_head.conv_cls.weight, bbox_head.conv_cls.bias, bbox_head.conv_reg_prevs.0.0.conv.weight, bbox_head.conv_reg_prevs.0.0.conv.bias, bbox_head.conv_reg_prevs.0.0.gn.weight, bbox_head.conv_reg_prevs.0.0.gn.bias, bbox_head.conv_reg_prevs.1.0.conv.weight, bbox_head.conv_reg_prevs.1.0.conv.bias, bbox_head.conv_reg_prevs.1.0.gn.weight, bbox_head.conv_reg_prevs.1.0.gn.bias, bbox_head.conv_reg_prevs.2.0.conv.weight, bbox_head.conv_reg_prevs.2.0.conv.bias, bbox_head.conv_reg_prevs.2.0.gn.weight, bbox_head.conv_reg_prevs.2.0.gn.bias, bbox_head.conv_reg_prevs.3.0.conv.weight, bbox_head.conv_reg_prevs.3.0.conv.bias, bbox_head.conv_reg_prevs.3.0.gn.weight, bbox_head.conv_reg_prevs.3.0.gn.bias, bbox_head.conv_regs.0.weight, bbox_head.conv_regs.0.bias, bbox_head.conv_regs.1.weight, bbox_head.conv_regs.1.bias, bbox_head.conv_regs.2.weight, bbox_head.conv_regs.2.bias, bbox_head.conv_regs.3.weight, bbox_head.conv_regs.3.bias, bbox_head.conv_regs.4.weight, bbox_head.conv_regs.4.bias, bbox_head.conv_dir_cls_prev.0.conv.weight, bbox_head.conv_dir_cls_prev.0.conv.bias, bbox_head.conv_dir_cls_prev.0.gn.weight, bbox_head.conv_dir_cls_prev.0.gn.bias, bbox_head.conv_dir_cls.weight, bbox_head.conv_dir_cls.bias, bbox_head.conv_attr_prev.0.conv.weight, bbox_head.conv_attr_prev.0.conv.bias, bbox_head.conv_attr_prev.0.gn.weight, bbox_head.conv_attr_prev.0.gn.bias, bbox_head.conv_attr.weight, bbox_head.conv_attr.bias, bbox_head.conv_centerness_prev.0.conv.weight, bbox_head.conv_centerness_prev.0.conv.bias, bbox_head.conv_centerness_prev.0.gn.weight, bbox_head.conv_centerness_prev.0.gn.bias, bbox_head.conv_centerness.weight, bbox_head.conv_centerness.bias, bbox_head.scales.0.0.scale, bbox_head.scales.0.1.scale, bbox_head.scales.0.2.scale, bbox_head.scales.1.0.scale, bbox_head.scales.1.1.scale, bbox_head.scales.1.2.scale, bbox_head.scales.2.0.scale, bbox_head.scales.2.1.scale, bbox_head.scales.2.2.scale, bbox_head.scales.3.0.scale, bbox_head.scales.3.1.scale, bbox_head.scales.3.2.scale, bbox_head.scales.4.0.scale, bbox_head.scales.4.1.scale, bbox_head.scales.4.2.scale
2021-08-16 16:28:59,906 - mmdet - INFO - Start running, host: root@half-dcn, work_dir: /nfs/lizhenyu1/workspace/python_workspace/mmdetection3d/nfs/lzy/fcos3d_ablation/oneten
2021-08-16 16:28:59,906 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
2021-08-16 16:30:58,144 - mmdet - INFO - Epoch [1][50/2217] lr: 3.189e-03, eta: 17:25:58, time: 2.363, data_time: 0.249, memory: 20144, loss_cls: 0.8050, loss_offset: 1.3732, loss_depth: 3.9061, loss_size: 3.1284, loss_rotsin: 0.5609, loss_centerness: 0.6189, loss_velo: 0.0628, loss_dir: 0.6951, loss_attr: 1.6726, loss: 12.8229, grad_norm: 38.2134
2021-08-16 16:32:41,190 - mmdet - INFO - Epoch [1][100/2217] lr: 3.723e-03, eta: 16:17:11, time: 2.061, data_time: 0.051, memory: 20170, loss_cls: 0.5821, loss_offset: 1.2511, loss_depth: 2.3540, loss_size: 2.3683, loss_rotsin: 0.5366, loss_centerness: 0.6011, loss_velo: 0.0602, loss_dir: 0.6923, loss_attr: 1.3200, loss: 9.7657, grad_norm: 17.6132
2021-08-16 16:34:24,527 - mmdet - INFO - Epoch [1][150/2217] lr: 4.256e-03, eta: 15:53:58, time: 2.067, data_time: 0.050, memory: 20170, loss_cls: 0.5355, loss_offset: 1.1922, loss_depth: 2.1691, loss_size: 2.0558, loss_rotsin: 0.5228, loss_centerness: 0.5999, loss_velo: 0.0604, loss_dir: 0.6922, loss_attr: 1.1718, loss: 8.9997, grad_norm: 18.1335
2021-08-16 16:36:08,000 - mmdet - INFO - Epoch [1][200/2217] lr: 4.789e-03, eta: 15:41:47, time: 2.069, data_time: 0.048, memory: 20170, loss_cls: 0.4969, loss_offset: 1.1279, loss_depth: 2.0394, loss_size: 1.9008, loss_rotsin: 0.5246, loss_centerness: 0.5990, loss_velo: 0.0615, loss_dir: 0.6897, loss_attr: 1.0840, loss: 8.5238, grad_norm: 18.3014
2021-08-16 16:37:51,015 - mmdet - INFO - Epoch [1][250/2217] lr: 5.323e-03, eta: 15:33:00, time: 2.060, data_time: 0.050, memory: 20170, loss_cls: 0.4826, loss_offset: 1.0960, loss_depth: 2.0908, loss_size: 1.8783, loss_rotsin: 0.5229, loss_centerness: 0.5981, loss_velo: 0.0598, loss_dir: 0.6951, loss_attr: 1.0440, loss: 8.4676, grad_norm: 16.5087
2021-08-16 16:39:34,330 - mmdet - INFO - Epoch [1][300/2217] lr: 5.856e-03, eta: 15:27:00, time: 2.066, data_time: 0.049, memory: 20170, loss_cls: 0.4671, loss_offset: 1.0654, loss_depth: 2.8196, loss_size: 1.7720, loss_rotsin: 0.5196, loss_centerness: 0.5967, loss_velo: 0.0614, loss_dir: 0.6900, loss_attr: 1.0292, loss: 9.0211, grad_norm: 18.4612
2021-08-16 16:41:17,391 - mmdet - INFO - Epoch [1][350/2217] lr: 6.389e-03, eta: 15:21:54, time: 2.061, data_time: 0.049, memory: 20170, loss_cls: 0.4617, loss_offset: 1.0803, loss_depth: 2.3834, loss_size: 1.7564, loss_rotsin: 0.5210, loss_centerness: 0.5961, loss_velo: 0.0638, loss_dir: 0.6883, loss_attr: 1.0028, loss: 8.5537, grad_norm: 17.7583
2021-08-16 16:43:00,622 - mmdet - INFO - Epoch [1][400/2217] lr: 6.923e-03, eta: 15:17:50, time: 2.065, data_time: 0.050, memory: 20170, loss_cls: 0.4498, loss_offset: 1.0463, loss_depth: 2.2897, loss_size: 1.6570, loss_rotsin: 0.5213, loss_centerness: 0.5947, loss_velo: 0.0614, loss_dir: 0.6901, loss_attr: 0.9487, loss: 8.2590, grad_norm: 16.4185
2021-08-16 16:44:44,446 - mmdet - INFO - Epoch [1][450/2217] lr: 7.456e-03, eta: 15:14:52, time: 2.076, data_time: 0.048, memory: 20170, loss_cls: 0.4456, loss_offset: 1.0261, loss_depth: 1.6762, loss_size: 1.6293, loss_rotsin: 0.5250, loss_centerness: 0.5938, loss_velo: 0.0614, loss_dir: 0.6878, loss_attr: 0.9219, loss: 7.5670, grad_norm: 12.3010
2021-08-16 16:46:27,986 - mmdet - INFO - Epoch [1][500/2217] lr: 7.989e-03, eta: 15:11:54, time: 2.071, data_time: 0.050, memory: 20170, loss_cls: 0.4434, loss_offset: 1.0168, loss_depth: 2.0131, loss_size: 1.5567, loss_rotsin: 0.5225, loss_centerness: 0.5939, loss_velo: 0.0602, loss_dir: 0.6885, loss_attr: 0.9316, loss: 7.8267, grad_norm: 12.6651
2021-08-16 16:48:10,963 - mmdet - INFO - Epoch [1][550/2217] lr: 8.000e-03, eta: 15:08:43, time: 2.060, data_time: 0.047, memory: 20170, loss_cls: 0.4277, loss_offset: 0.9955, loss_depth: 1.5270, loss_size: 1.4948, loss_rotsin: 0.5178, loss_centerness: 0.5929, loss_velo: 0.0605, loss_dir: 0.6854, loss_attr: 0.8836, loss: 7.1852, grad_norm: 11.2509
2021-08-16 16:49:53,866 - mmdet - INFO - Epoch [1][600/2217] lr: 8.000e-03, eta: 15:05:43, time: 2.058, data_time: 0.047, memory: 20170, loss_cls: 0.4287, loss_offset: 0.9870, loss_depth: 1.6196, loss_size: 1.4677, loss_rotsin: 0.5049, loss_centerness: 0.5930, loss_velo: 0.0626, loss_dir: 0.6826, loss_attr: 0.8852, loss: 7.2315, grad_norm: 10.8413
2021-08-16 16:51:37,030 - mmdet - INFO - Epoch [1][650/2217] lr: 8.000e-03, eta: 15:03:06, time: 2.063, data_time: 0.050, memory: 20170, loss_cls: 0.4221, loss_offset: 0.9616, loss_depth: 1.4105, loss_size: 1.4638, loss_rotsin: 0.5010, loss_centerness: 0.5920, loss_velo: 0.0619, loss_dir: 0.6820, loss_attr: 0.8768, loss: 6.9718, grad_norm: 9.0736
2021-08-16 16:53:20,538 - mmdet - INFO - Epoch [1][700/2217] lr: 8.000e-03, eta: 15:00:49, time: 2.070, data_time: 0.049, memory: 20170, loss_cls: 0.4153, loss_offset: 0.9700, loss_depth: 1.6926, loss_size: 1.4445, loss_rotsin: 0.5121, loss_centerness: 0.5920, loss_velo: 0.0599, loss_dir: 0.6810, loss_attr: 0.8376, loss: 7.2051, grad_norm: 9.8539
2021-08-16 16:55:03,358 - mmdet - INFO - Epoch [1][750/2217] lr: 8.000e-03, eta: 14:58:12, time: 2.056, data_time: 0.049, memory: 20170, loss_cls: 0.4078, loss_offset: 0.9546, loss_depth: 1.4394, loss_size: 1.3821, loss_rotsin: 0.5011, loss_centerness: 0.5910, loss_velo: 0.0625, loss_dir: 0.6799, loss_attr: 0.8351, loss: 6.8535, grad_norm: 9.0669
2021-08-16 16:56:46,382 - mmdet - INFO - Epoch [1][800/2217] lr: 8.000e-03, eta: 14:55:49, time: 2.060, data_time: 0.049, memory: 20170, loss_cls: 0.4070, loss_offset: 0.9301, loss_depth: 1.3061, loss_size: 1.3603, loss_rotsin: 0.4992, loss_centerness: 0.5900, loss_velo: 0.0643, loss_dir: 0.6745, loss_attr: 0.8139, loss: 6.6454, grad_norm: 8.2765
2021-08-16 16:58:29,385 - mmdet - INFO - Epoch [1][850/2217] lr: 8.000e-03, eta: 14:53:31, time: 2.060, data_time: 0.048, memory: 20170, loss_cls: 0.3990, loss_offset: 0.9268, loss_depth: 1.2917, loss_size: 1.3341, loss_rotsin: 0.4885, loss_centerness: 0.5896, loss_velo: 0.0615, loss_dir: 0.6781, loss_attr: 0.7773, loss: 6.5467, grad_norm: 7.7154
2021-08-16 17:00:12,584 - mmdet - INFO - Epoch [1][900/2217] lr: 8.000e-03, eta: 14:51:21, time: 2.064, data_time: 0.051, memory: 20170, loss_cls: 0.3946, loss_offset: 0.9214, loss_depth: 1.2819, loss_size: 1.3079, loss_rotsin: 0.4942, loss_centerness: 0.5896, loss_velo: 0.0588, loss_dir: 0.6734, loss_attr: 0.7802, loss: 6.5019, grad_norm: 8.0818
2021-08-16 17:01:55,765 - mmdet - INFO - Epoch [1][950/2217] lr: 8.000e-03, eta: 14:49:14, time: 2.064, data_time: 0.051, memory: 20170, loss_cls: 0.3894, loss_offset: 0.9072, loss_depth: 1.3102, loss_size: 1.3093, loss_rotsin: 0.4818, loss_centerness: 0.5891, loss_velo: 0.0625, loss_dir: 0.6724, loss_attr: 0.7915, loss: 6.5133, grad_norm: 8.2521
2021-08-16 17:03:39,301 - mmdet - INFO - Exp name: fcos3d_r50.py
2021-08-16 17:03:39,301 - mmdet - INFO - Epoch [1][1000/2217] lr: 8.000e-03, eta: 14:47:18, time: 2.071, data_time: 0.049, memory: 20170, loss_cls: 0.3926, loss_offset: 0.9116, loss_depth: 1.2588, loss_size: 1.3219, loss_rotsin: 0.4820, loss_centerness: 0.5888, loss_velo: 0.0619, loss_dir: 0.6703, loss_attr: 0.7598, loss: 6.4475, grad_norm: 8.0823
2021-08-16 17:05:23,105 - mmdet - INFO - Epoch [1][1050/2217] lr: 8.000e-03, eta: 14:45:31, time: 2.076, data_time: 0.052, memory: 20170, loss_cls: 0.3793, loss_offset: 0.8884, loss_depth: 1.2682, loss_size: 1.2932, loss_rotsin: 0.4660, loss_centerness: 0.5886, loss_velo: 0.0624, loss_dir: 0.6666, loss_attr: 0.7482, loss: 6.3610, grad_norm: 8.5867
2021-08-16 17:07:06,680 - mmdet - INFO - Epoch [1][1100/2217] lr: 8.000e-03, eta: 14:43:38, time: 2.072, data_time: 0.051, memory: 20173, loss_cls: 0.3763, loss_offset: 0.8820, loss_depth: 1.2764, loss_size: 1.2625, loss_rotsin: 0.4635, loss_centerness: 0.5879, loss_velo: 0.0642, loss_dir: 0.6646, loss_attr: 0.7441, loss: 6.3215, grad_norm: 8.1818
2021-08-16 17:08:50,056 - mmdet - INFO - Epoch [1][1150/2217] lr: 8.000e-03, eta: 14:41:41, time: 2.068, data_time: 0.052, memory: 20173, loss_cls: 0.3800, loss_offset: 0.8958, loss_depth: 1.2277, loss_size: 1.2493, loss_rotsin: 0.4677, loss_centerness: 0.5884, loss_velo: 0.0626, loss_dir: 0.6651, loss_attr: 0.7462, loss: 6.2829, grad_norm: 8.1743
2021-08-16 17:10:33,571 - mmdet - INFO - Epoch [1][1200/2217] lr: 8.000e-03, eta: 14:39:49, time: 2.070, data_time: 0.051, memory: 20173, loss_cls: 0.3762, loss_offset: 0.8925, loss_depth: 1.4183, loss_size: 1.2633, loss_rotsin: 0.4564, loss_centerness: 0.5882, loss_velo: 0.0593, loss_dir: 0.6625, loss_attr: 0.7613, loss: 6.4780, grad_norm: 8.5734
2021-08-16 17:12:16,912 - mmdet - INFO - Epoch [1][1250/2217] lr: 8.000e-03, eta: 14:37:54, time: 2.067, data_time: 0.051, memory: 20173, loss_cls: 0.3700, loss_offset: 0.8763, loss_depth: 1.1794, loss_size: 1.1852, loss_rotsin: 0.4488, loss_centerness: 0.5873, loss_velo: 0.0589, loss_dir: 0.6561, loss_attr: 0.7094, loss: 6.0715, grad_norm: 7.5732
2021-08-16 17:14:00,209 - mmdet - INFO - Epoch [1][1300/2217] lr: 8.000e-03, eta: 14:35:58, time: 2.066, data_time: 0.049, memory: 20173, loss_cls: 0.3671, loss_offset: 0.8769, loss_depth: 1.2394, loss_size: 1.2201, loss_rotsin: 0.4446, loss_centerness: 0.5874, loss_velo: 0.0590, loss_dir: 0.6560, loss_attr: 0.7073, loss: 6.1579, grad_norm: 8.3716
2021-08-16 17:15:43,247 - mmdet - INFO - Epoch [1][1350/2217] lr: 8.000e-03, eta: 14:33:59, time: 2.061, data_time: 0.050, memory: 20173, loss_cls: 0.3719, loss_offset: 0.8693, loss_depth: 1.3708, loss_size: 1.2238, loss_rotsin: 0.4415, loss_centerness: 0.5867, loss_velo: 0.0629, loss_dir: 0.6507, loss_attr: 0.7367, loss: 6.3144, grad_norm: 9.1905
2021-08-16 17:17:25,648 - mmdet - INFO - Epoch [1][1400/2217] lr: 8.000e-03, eta: 14:31:50, time: 2.048, data_time: 0.050, memory: 20195, loss_cls: 0.3656, loss_offset: 0.8625, loss_depth: 1.2798, loss_size: 1.1729, loss_rotsin: 0.4378, loss_centerness: 0.5868, loss_velo: 0.0611, loss_dir: 0.6475, loss_attr: 0.7045, loss: 6.1185, grad_norm: 8.2891
2021-08-16 17:19:08,783 - mmdet - INFO - Epoch [1][1450/2217] lr: 8.000e-03, eta: 14:29:55, time: 2.063, data_time: 0.051, memory: 20195, loss_cls: 0.3589, loss_offset: 0.8547, loss_depth: 1.1497, loss_size: 1.1840, loss_rotsin: 0.4312, loss_centerness: 0.5860, loss_velo: 0.0619, loss_dir: 0.6473, loss_attr: 0.6762, loss: 5.9499, grad_norm: 7.3459
2021-08-16 17:20:52,108 - mmdet - INFO - Epoch [1][1500/2217] lr: 8.000e-03, eta: 14:28:04, time: 2.066, data_time: 0.050, memory: 20195, loss_cls: 0.3635, loss_offset: 0.8503, loss_depth: 1.1803, loss_size: 1.1902, loss_rotsin: 0.4284, loss_centerness: 0.5865, loss_velo: 0.0607, loss_dir: 0.6437, loss_attr: 0.6998, loss: 6.0033, grad_norm: 7.7658
2021-08-16 17:22:35,553 - mmdet - INFO - Epoch [1][1550/2217] lr: 8.000e-03, eta: 14:26:16, time: 2.069, data_time: 0.047, memory: 20195, loss_cls: 0.3608, loss_offset: 0.8474, loss_depth: 1.1770, loss_size: 1.1674, loss_rotsin: 0.4214, loss_centerness: 0.5859, loss_velo: 0.0603, loss_dir: 0.6426, loss_attr: 0.6745, loss: 5.9373, grad_norm: 8.0156
2021-08-16 17:24:19,907 - mmdet - INFO - Epoch [1][1600/2217] lr: 8.000e-03, eta: 14:24:42, time: 2.087, data_time: 0.056, memory: 20195, loss_cls: 0.3617, loss_offset: 0.8430, loss_depth: 1.2385, loss_size: 1.1507, loss_rotsin: 0.4139, loss_centerness: 0.5857, loss_velo: 0.0629, loss_dir: 0.6368, loss_attr: 0.7006, loss: 5.9938, grad_norm: 8.0646
2021-08-16 17:26:04,252 - mmdet - INFO - Epoch [1][1650/2217] lr: 8.000e-03, eta: 14:23:07, time: 2.087, data_time: 0.054, memory: 20195, loss_cls: 0.3584, loss_offset: 0.8362, loss_depth: 1.1554, loss_size: 1.1840, loss_rotsin: 0.4127, loss_centerness: 0.5852, loss_velo: 0.0645, loss_dir: 0.6281, loss_attr: 0.6951, loss: 5.9197, grad_norm: 7.1854
2021-08-16 17:27:47,958 - mmdet - INFO - Epoch [1][1700/2217] lr: 8.000e-03, eta: 14:21:22, time: 2.074, data_time: 0.050, memory: 20195, loss_cls: 0.3500, loss_offset: 0.8334, loss_depth: 1.0863, loss_size: 1.1548, loss_rotsin: 0.4109, loss_centerness: 0.5853, loss_velo: 0.0631, loss_dir: 0.6296, loss_attr: 0.6579, loss: 5.7711, grad_norm: 6.9743
2021-08-16 17:29:32,368 - mmdet - INFO - Epoch [1][1750/2217] lr: 8.000e-03, eta: 14:19:48, time: 2.088, data_time: 0.049, memory: 20195, loss_cls: 0.3549, loss_offset: 0.8333, loss_depth: 1.1133, loss_size: 1.1344, loss_rotsin: 0.4141, loss_centerness: 0.5853, loss_velo: 0.0586, loss_dir: 0.6254, loss_attr: 0.6744, loss: 5.7938, grad_norm: 7.6575
2021-08-16 17:31:17,340 - mmdet - INFO - Epoch [1][1800/2217] lr: 8.000e-03, eta: 14:18:20, time: 2.099, data_time: 0.054, memory: 20195, loss_cls: 0.3554, loss_offset: 0.8298, loss_depth: 1.1059, loss_size: 1.1404, loss_rotsin: 0.4133, loss_centerness: 0.5851, loss_velo: 0.0613, loss_dir: 0.6226, loss_attr: 0.6726, loss: 5.7863, grad_norm: 7.3495
2021-08-16 17:33:02,342 - mmdet - INFO - Epoch [1][1850/2217] lr: 8.000e-03, eta: 14:16:52, time: 2.100, data_time: 0.055, memory: 20195, loss_cls: 0.3478, loss_offset: 0.8260, loss_depth: 1.1164, loss_size: 1.1089, loss_rotsin: 0.4029, loss_centerness: 0.5847, loss_velo: 0.0645, loss_dir: 0.6143, loss_attr: 0.6417, loss: 5.7070, grad_norm: 7.7292
2021-08-16 17:34:46,185 - mmdet - INFO - Epoch [1][1900/2217] lr: 8.000e-03, eta: 14:15:08, time: 2.077, data_time: 0.050, memory: 20195, loss_cls: 0.3489, loss_offset: 0.8249, loss_depth: 1.1744, loss_size: 1.1369, loss_rotsin: 0.3984, loss_centerness: 0.5851, loss_velo: 0.0644, loss_dir: 0.6131, loss_attr: 0.6431, loss: 5.7893, grad_norm: 7.9026
2021-08-16 17:36:30,239 - mmdet - INFO - Epoch [1][1950/2217] lr: 8.000e-03, eta: 14:13:27, time: 2.081, data_time: 0.049, memory: 20195, loss_cls: 0.3486, loss_offset: 0.8277, loss_depth: 1.1371, loss_size: 1.1846, loss_rotsin: 0.4034, loss_centerness: 0.5850, loss_velo: 0.0618, loss_dir: 0.6202, loss_attr: 0.6494, loss: 5.8180, grad_norm: 7.5613
2021-08-16 17:38:14,869 - mmdet - INFO - Exp name: fcos3d_r50.py
2021-08-16 17:38:14,870 - mmdet - INFO - Epoch [1][2000/2217] lr: 8.000e-03, eta: 14:11:53, time: 2.093, data_time: 0.052, memory: 20195, loss_cls: 0.3453, loss_offset: 0.8144, loss_depth: 1.1523, loss_size: 1.1284, loss_rotsin: 0.3992, loss_centerness: 0.5843, loss_velo: 0.0635, loss_dir: 0.6105, loss_attr: 0.6579, loss: 5.7560, grad_norm: 8.1004
2021-08-16 17:39:59,742 - mmdet - INFO - Epoch [1][2050/2217] lr: 8.000e-03, eta: 14:10:21, time: 2.097, data_time: 0.052, memory: 20195, loss_cls: 0.3420, loss_offset: 0.8134, loss_depth: 1.0569, loss_size: 1.1182, loss_rotsin: 0.3943, loss_centerness: 0.5844, loss_velo: 0.0629, loss_dir: 0.6068, loss_attr: 0.6532, loss: 5.6321, grad_norm: 6.7168
2021-08-16 17:41:44,669 - mmdet - INFO - Epoch [1][2100/2217] lr: 8.000e-03, eta: 14:08:49, time: 2.099, data_time: 0.051, memory: 20195, loss_cls: 0.3445, loss_offset: 0.8151, loss_depth: 1.1723, loss_size: 1.1003, loss_rotsin: 0.4010, loss_centerness: 0.5840, loss_velo: 0.0589, loss_dir: 0.6120, loss_attr: 0.6123, loss: 5.7003, grad_norm: 8.2136
2021-08-16 17:43:29,548 - mmdet - INFO - Epoch [1][2150/2217] lr: 8.000e-03, eta: 14:07:16, time: 2.098, data_time: 0.050, memory: 20195, loss_cls: 0.3373, loss_offset: 0.8052, loss_depth: 1.0739, loss_size: 1.0706, loss_rotsin: 0.3915, loss_centerness: 0.5841, loss_velo: 0.0594, loss_dir: 0.6066, loss_attr: 0.6222, loss: 5.5508, grad_norm: 7.4629
2021-08-16 17:45:14,435 - mmdet - INFO - Epoch [1][2200/2217] lr: 8.000e-03, eta: 14:05:43, time: 2.098, data_time: 0.054, memory: 20195, loss_cls: 0.3427, loss_offset: 0.8087, loss_depth: 1.1014, loss_size: 1.0798, loss_rotsin: 0.3910, loss_centerness: 0.5842, loss_velo: 0.0641, loss_dir: 0.6052, loss_attr: 0.6393, loss: 5.6164, grad_norm: 7.6630
2021-08-16 17:45:50,298 - mmdet - INFO - Saving checkpoint at 1 epochs
2021-08-16 17:47:42,425 - mmdet - INFO - Epoch [2][50/2217] lr: 8.000e-03, eta: 13:58:21, time: 2.223, data_time: 0.177, memory: 20195, loss_cls: 0.3375, loss_offset: 0.8002, loss_depth: 1.0480, loss_size: 1.0324, loss_rotsin: 0.3844, loss_centerness: 0.5843, loss_velo: 0.0610, loss_dir: 0.5949, loss_attr: 0.6000, loss: 5.4427, grad_norm: 7.0123
2021-08-16 17:49:26,651 - mmdet - INFO - Epoch [2][100/2217] lr: 8.000e-03, eta: 13:56:46, time: 2.084, data_time: 0.053, memory: 20195, loss_cls: 0.3324, loss_offset: 0.7935, loss_depth: 1.0214, loss_size: 1.0593, loss_rotsin: 0.3915, loss_centerness: 0.5835, loss_velo: 0.0617, loss_dir: 0.6050, loss_attr: 0.6137, loss: 5.4620, grad_norm: 7.0299
2021-08-16 17:51:11,775 - mmdet - INFO - Epoch [2][150/2217] lr: 8.000e-03, eta: 13:55:21, time: 2.103, data_time: 0.056, memory: 20195, loss_cls: 0.3341, loss_offset: 0.7973, loss_depth: 1.0139, loss_size: 1.0149, loss_rotsin: 0.3869, loss_centerness: 0.5838, loss_velo: 0.0595, loss_dir: 0.5957, loss_attr: 0.5933, loss: 5.3794, grad_norm: 7.0767
2021-08-16 17:52:56,206 - mmdet - INFO - Epoch [2][200/2217] lr: 8.000e-03, eta: 13:53:48, time: 2.088, data_time: 0.051, memory: 20195, loss_cls: 0.3378, loss_offset: 0.7979, loss_depth: 1.0956, loss_size: 1.0640, loss_rotsin: 0.3796, loss_centerness: 0.5843, loss_velo: 0.0612, loss_dir: 0.5917, loss_attr: 0.6009, loss: 5.5129, grad_norm: 8.0321
2021-08-16 17:54:40,903 - mmdet - INFO - Epoch [2][250/2217] lr: 8.000e-03, eta: 13:52:17, time: 2.094, data_time: 0.053, memory: 20195, loss_cls: 0.3365, loss_offset: 0.7905, loss_depth: 1.0116, loss_size: 1.0630, loss_rotsin: 0.3829, loss_centerness: 0.5836, loss_velo: 0.0589, loss_dir: 0.5898, loss_attr: 0.6035, loss: 5.4204, grad_norm: 7.2930
2021-08-16 17:56:25,324 - mmdet - INFO - Epoch [2][300/2217] lr: 8.000e-03, eta: 13:50:43, time: 2.088, data_time: 0.054, memory: 20195, loss_cls: 0.3327, loss_offset: 0.7937, loss_depth: 1.0668, loss_size: 1.0323, loss_rotsin: 0.3775, loss_centerness: 0.5837, loss_velo: 0.0627, loss_dir: 0.5788, loss_attr: 0.6040, loss: 5.4323, grad_norm: 7.7191
2021-08-16 17:58:08,989 - mmdet - INFO - Epoch [2][350/2217] lr: 8.000e-03, eta: 13:49:02, time: 2.073, data_time: 0.051, memory: 20195, loss_cls: 0.3325, loss_offset: 0.7844, loss_depth: 1.0528, loss_size: 1.0175, loss_rotsin: 0.3766, loss_centerness: 0.5836, loss_velo: 0.0583, loss_dir: 0.5885, loss_attr: 0.6070, loss: 5.4012, grad_norm: 7.4842
2021-08-16 17:59:52,906 - mmdet - INFO - Epoch [2][400/2217] lr: 8.000e-03, eta: 13:47:22, time: 2.078, data_time: 0.051, memory: 20195, loss_cls: 0.3286, loss_offset: 0.7936, loss_depth: 1.0666, loss_size: 1.0591, loss_rotsin: 0.3764, loss_centerness: 0.5832, loss_velo: 0.0610, loss_dir: 0.5821, loss_attr: 0.5702, loss: 5.4207, grad_norm: 8.1189
2021-08-16 18:01:37,346 - mmdet - INFO - Epoch [2][450/2217] lr: 8.000e-03, eta: 13:45:47, time: 2.089, data_time: 0.050, memory: 20195, loss_cls: 0.3310, loss_offset: 0.7800, loss_depth: 1.0181, loss_size: 1.0300, loss_rotsin: 0.3617, loss_centerness: 0.5828, loss_velo: 0.0606, loss_dir: 0.5788, loss_attr: 0.5790, loss: 5.3221, grad_norm: 7.2509
2021-08-16 18:03:21,760 - mmdet - INFO - Epoch [2][500/2217] lr: 8.000e-03, eta: 13:44:12, time: 2.088, data_time: 0.050, memory: 20195, loss_cls: 0.3304, loss_offset: 0.7765, loss_depth: 1.0034, loss_size: 1.0278, loss_rotsin: 0.3651, loss_centerness: 0.5825, loss_velo: 0.0611, loss_dir: 0.5803, loss_attr: 0.5750, loss: 5.3020, grad_norm: 7.3301
2021-08-16 18:05:06,261 - mmdet - INFO - Epoch [2][550/2217] lr: 8.000e-03, eta: 13:42:37, time: 2.090, data_time: 0.051, memory: 20195, loss_cls: 0.3298, loss_offset: 0.7820, loss_depth: 1.0700, loss_size: 1.0202, loss_rotsin: 0.3674, loss_centerness: 0.5830, loss_velo: 0.0616, loss_dir: 0.5792, loss_attr: 0.5947, loss: 5.3879, grad_norm: 7.9895
2021-08-16 18:06:50,195 - mmdet - INFO - Epoch [2][600/2217] lr: 8.000e-03, eta: 13:40:57, time: 2.079, data_time: 0.051, memory: 20195, loss_cls: 0.3260, loss_offset: 0.7807, loss_depth: 1.0502, loss_size: 1.0288, loss_rotsin: 0.3717, loss_centerness: 0.5828, loss_velo: 0.0605, loss_dir: 0.5743, loss_attr: 0.5756, loss: 5.3504, grad_norm: 7.8268
2021-08-16 18:08:34,283 - mmdet - INFO - Epoch [2][650/2217] lr: 8.000e-03, eta: 13:39:18, time: 2.082, data_time: 0.050, memory: 20195, loss_cls: 0.3302, loss_offset: 0.7818, loss_depth: 1.0538, loss_size: 1.0204, loss_rotsin: 0.3638, loss_centerness: 0.5829, loss_velo: 0.0620, loss_dir: 0.5756, loss_attr: 0.5848, loss: 5.3553, grad_norm: 7.3835
2021-08-16 18:10:18,277 - mmdet - INFO - Epoch [2][700/2217] lr: 8.000e-03, eta: 13:37:38, time: 2.080, data_time: 0.049, memory: 20195, loss_cls: 0.3260, loss_offset: 0.7731, loss_depth: 0.9830, loss_size: 0.9873, loss_rotsin: 0.3661, loss_centerness: 0.5820, loss_velo: 0.0604, loss_dir: 0.5754, loss_attr: 0.5724, loss: 5.2256, grad_norm: 7.0768
2021-08-16 18:12:01,406 - mmdet - INFO - Epoch [2][750/2217] lr: 8.000e-03, eta: 13:35:51, time: 2.063, data_time: 0.051, memory: 20195, loss_cls: 0.3308, loss_offset: 0.7803, loss_depth: 1.0497, loss_size: 1.0100, loss_rotsin: 0.3703, loss_centerness: 0.5829, loss_velo: 0.0601, loss_dir: 0.5808, loss_attr: 0.5653, loss: 5.3302, grad_norm: 7.5868
2021-08-16 18:13:44,638 - mmdet - INFO - Epoch [2][800/2217] lr: 8.000e-03, eta: 13:34:05, time: 2.065, data_time: 0.051, memory: 20195, loss_cls: 0.3246, loss_offset: 0.7730, loss_depth: 1.0526, loss_size: 1.0297, loss_rotsin: 0.3645, loss_centerness: 0.5825, loss_velo: 0.0611, loss_dir: 0.5714, loss_attr: 0.5659, loss: 5.3253, grad_norm: 8.1117
2021-08-16 18:15:28,507 - mmdet - INFO - Epoch [2][850/2217] lr: 8.000e-03, eta: 13:32:24, time: 2.077, data_time: 0.050, memory: 20195, loss_cls: 0.3252, loss_offset: 0.7753, loss_depth: 1.0968, loss_size: 1.0044, loss_rotsin: 0.3652, loss_centerness: 0.5829, loss_velo: 0.0601, loss_dir: 0.5754, loss_attr: 0.5801, loss: 5.3654, grad_norm: 8.3897
2021-08-16 18:17:12,239 - mmdet - INFO - Epoch [2][900/2217] lr: 8.000e-03, eta: 13:30:42, time: 2.075, data_time: 0.051, memory: 20195, loss_cls: 0.3195, loss_offset: 0.7637, loss_depth: 1.0877, loss_size: 1.0038, loss_rotsin: 0.3608, loss_centerness: 0.5826, loss_velo: 0.0630, loss_dir: 0.5640, loss_attr: 0.5696, loss: 5.3147, grad_norm: 7.9917
2021-08-16 18:18:55,865 - mmdet - INFO - Epoch [2][950/2217] lr: 8.000e-03, eta: 13:28:59, time: 2.073, data_time: 0.049, memory: 20195, loss_cls: 0.3216, loss_offset: 0.7733, loss_depth: 0.9666, loss_size: 1.0067, loss_rotsin: 0.3535, loss_centerness: 0.5827, loss_velo: 0.0596, loss_dir: 0.5737, loss_attr: 0.5722, loss: 5.2099, grad_norm: 6.9800
2021-08-16 18:20:39,199 - mmdet - INFO - Epoch [2][1000/2217] lr: 8.000e-03, eta: 13:27:13, time: 2.067, data_time: 0.049, memory: 20195, loss_cls: 0.3252, loss_offset: 0.7639, loss_depth: 0.9834, loss_size: 1.0023, loss_rotsin: 0.3593, loss_centerness: 0.5823, loss_velo: 0.0605, loss_dir: 0.5654, loss_attr: 0.5659, loss: 5.2081, grad_norm: 7.3979
2021-08-16 18:22:22,648 - mmdet - INFO - Epoch [2][1050/2217] lr: 8.000e-03, eta: 13:25:29, time: 2.069, data_time: 0.047, memory: 20195, loss_cls: 0.3188, loss_offset: 0.7588, loss_depth: 0.9545, loss_size: 0.9645, loss_rotsin: 0.3527, loss_centerness: 0.5818, loss_velo: 0.0621, loss_dir: 0.5613, loss_attr: 0.5598, loss: 5.1143, grad_norm: 6.6705
2021-08-16 18:24:06,216 - mmdet - INFO - Epoch [2][1100/2217] lr: 8.000e-03, eta: 13:23:46, time: 2.071, data_time: 0.053, memory: 20195, loss_cls: 0.3234, loss_offset: 0.7643, loss_depth: 0.9937, loss_size: 1.0039, loss_rotsin: 0.3559, loss_centerness: 0.5821, loss_velo: 0.0639, loss_dir: 0.5578, loss_attr: 0.5675, loss: 5.2126, grad_norm: 7.2494
2021-08-16 18:25:49,390 - mmdet - INFO - Epoch [2][1150/2217] lr: 8.000e-03, eta: 13:22:00, time: 2.063, data_time: 0.049, memory: 20195, loss_cls: 0.3167, loss_offset: 0.7510, loss_depth: 0.9619, loss_size: 0.9634, loss_rotsin: 0.3440, loss_centerness: 0.5815, loss_velo: 0.0624, loss_dir: 0.5501, loss_attr: 0.5458, loss: 5.0767, grad_norm: 6.9843
2021-08-16 18:27:32,620 - mmdet - INFO - Epoch [2][1200/2217] lr: 8.000e-03, eta: 13:20:14, time: 2.065, data_time: 0.050, memory: 20195, loss_cls: 0.3195, loss_offset: 0.7517, loss_depth: 0.9548, loss_size: 0.9646, loss_rotsin: 0.3555, loss_centerness: 0.5818, loss_velo: 0.0647, loss_dir: 0.5612, loss_attr: 0.5587, loss: 5.1123, grad_norm: 6.9689
2021-08-16 18:29:16,605 - mmdet - INFO - Epoch [2][1250/2217] lr: 8.000e-03, eta: 13:18:33, time: 2.080, data_time: 0.049, memory: 20195, loss_cls: 0.3196, loss_offset: 0.7529, loss_depth: 0.9563, loss_size: 0.9688, loss_rotsin: 0.3506, loss_centerness: 0.5816, loss_velo: 0.0602, loss_dir: 0.5590, loss_attr: 0.5811, loss: 5.1302, grad_norm: 7.5367
2021-08-16 18:30:59,525 - mmdet - INFO - Epoch [2][1300/2217] lr: 8.000e-03, eta: 13:16:46, time: 2.058, data_time: 0.049, memory: 20195, loss_cls: 0.3172, loss_offset: 0.7518, loss_depth: 1.0408, loss_size: 0.9601, loss_rotsin: 0.3487, loss_centerness: 0.5819, loss_velo: 0.0594, loss_dir: 0.5563, loss_attr: 0.5441, loss: 5.1601, grad_norm: 8.2584
2021-08-16 18:32:42,734 - mmdet - INFO - Epoch [2][1350/2217] lr: 8.000e-03, eta: 13:15:00, time: 2.064, data_time: 0.049, memory: 20195, loss_cls: 0.3170, loss_offset: 0.7486, loss_depth: 1.0002, loss_size: 0.9646, loss_rotsin: 0.3458, loss_centerness: 0.5813, loss_velo: 0.0651, loss_dir: 0.5483, loss_attr: 0.5433, loss: 5.1142, grad_norm: 7.7967
2021-08-16 18:34:25,742 - mmdet - INFO - Epoch [2][1400/2217] lr: 8.000e-03, eta: 13:13:13, time: 2.060, data_time: 0.050, memory: 20195, loss_cls: 0.3163, loss_offset: 0.7535, loss_depth: 0.9950, loss_size: 0.9745, loss_rotsin: 0.3449, loss_centerness: 0.5816, loss_velo: 0.0623, loss_dir: 0.5491, loss_attr: 0.5469, loss: 5.1240, grad_norm: 7.8125
2021-08-16 18:36:09,178 - mmdet - INFO - Epoch [2][1450/2217] lr: 8.000e-03, eta: 13:11:29, time: 2.069, data_time: 0.051, memory: 20195, loss_cls: 0.3166, loss_offset: 0.7507, loss_depth: 0.9819, loss_size: 0.9810, loss_rotsin: 0.3465, loss_centerness: 0.5814, loss_velo: 0.0626, loss_dir: 0.5475, loss_attr: 0.5487, loss: 5.1169, grad_norm: 7.4328
2021-08-16 18:37:51,907 - mmdet - INFO - Epoch [2][1500/2217] lr: 8.000e-03, eta: 13:09:41, time: 2.055, data_time: 0.050, memory: 20195, loss_cls: 0.3133, loss_offset: 0.7418, loss_depth: 0.9372, loss_size: 0.9568, loss_rotsin: 0.3362, loss_centerness: 0.5810, loss_velo: 0.0617, loss_dir: 0.5546, loss_attr: 0.5464, loss: 5.0289, grad_norm: 7.3639
2021-08-16 18:39:35,118 - mmdet - INFO - Epoch [2][1550/2217] lr: 8.000e-03, eta: 13:07:56, time: 2.064, data_time: 0.053, memory: 20195, loss_cls: 0.3180, loss_offset: 0.7557, loss_depth: 1.0028, loss_size: 0.9677, loss_rotsin: 0.3472, loss_centerness: 0.5819, loss_velo: 0.0637, loss_dir: 0.5480, loss_attr: 0.5546, loss: 5.1396, grad_norm: 7.6839
2021-08-16 18:41:18,559 - mmdet - INFO - Epoch [2][1600/2217] lr: 8.000e-03, eta: 13:06:12, time: 2.069, data_time: 0.050, memory: 20195, loss_cls: 0.3147, loss_offset: 0.7529, loss_depth: 0.9924, loss_size: 0.9545, loss_rotsin: 0.3389, loss_centerness: 0.5815, loss_velo: 0.0608, loss_dir: 0.5520, loss_attr: 0.5432, loss: 5.0908, grad_norm: 8.0586
2021-08-16 18:43:02,464 - mmdet - INFO - Epoch [2][1650/2217] lr: 8.000e-03, eta: 13:04:30, time: 2.078, data_time: 0.052, memory: 20195, loss_cls: 0.3132, loss_offset: 0.7442, loss_depth: 0.9176, loss_size: 0.9507, loss_rotsin: 0.3347, loss_centerness: 0.5817, loss_velo: 0.0600, loss_dir: 0.5370, loss_attr: 0.5464, loss: 4.9857, grad_norm: 7.0296
2021-08-16 18:44:46,486 - mmdet - INFO - Epoch [2][1700/2217] lr: 8.000e-03, eta: 13:02:50, time: 2.080, data_time: 0.050, memory: 20195, loss_cls: 0.3164, loss_offset: 0.7440, loss_depth: 0.9587, loss_size: 0.9689, loss_rotsin: 0.3405, loss_centerness: 0.5817, loss_velo: 0.0597, loss_dir: 0.5404, loss_attr: 0.5234, loss: 5.0339, grad_norm: 7.4196
2021-08-16 18:46:29,409 - mmdet - INFO - Epoch [2][1750/2217] lr: 8.000e-03, eta: 13:01:03, time: 2.058, data_time: 0.052, memory: 20195, loss_cls: 0.3132, loss_offset: 0.7467, loss_depth: 0.9058, loss_size: 0.9241, loss_rotsin: 0.3387, loss_centerness: 0.5814, loss_velo: 0.0629, loss_dir: 0.5410, loss_attr: 0.5382, loss: 4.9520, grad_norm: 6.3630
2021-08-16 18:48:12,531 - mmdet - INFO - Epoch [2][1800/2217] lr: 8.000e-03, eta: 12:59:17, time: 2.062, data_time: 0.053, memory: 20195, loss_cls: 0.3132, loss_offset: 0.7398, loss_depth: 0.9591, loss_size: 0.9676, loss_rotsin: 0.3326, loss_centerness: 0.5807, loss_velo: 0.0628, loss_dir: 0.5392, loss_attr: 0.5341, loss: 5.0290, grad_norm: 7.3761
2021-08-16 18:49:56,141 - mmdet - INFO - Epoch [2][1850/2217] lr: 8.000e-03, eta: 12:57:34, time: 2.072, data_time: 0.053, memory: 20195, loss_cls: 0.3095, loss_offset: 0.7424, loss_depth: 0.9946, loss_size: 0.9299, loss_rotsin: 0.3274, loss_centerness: 0.5811, loss_velo: 0.0609, loss_dir: 0.5355, loss_attr: 0.5199, loss: 5.0012, grad_norm: 8.2774
2021-08-16 18:51:39,807 - mmdet - INFO - Epoch [2][1900/2217] lr: 8.000e-03, eta: 12:55:52, time: 2.073, data_time: 0.053, memory: 20195, loss_cls: 0.3103, loss_offset: 0.7412, loss_depth: 0.9271, loss_size: 0.9214, loss_rotsin: 0.3325, loss_centerness: 0.5813, loss_velo: 0.0592, loss_dir: 0.5425, loss_attr: 0.5087, loss: 4.9241, grad_norm: 7.0152
2021-08-16 18:53:23,276 - mmdet - INFO - Epoch [2][1950/2217] lr: 8.000e-03, eta: 12:54:08, time: 2.069, data_time: 0.054, memory: 20195, loss_cls: 0.3076, loss_offset: 0.7264, loss_depth: 0.9310, loss_size: 0.9364, loss_rotsin: 0.3296, loss_centerness: 0.5806, loss_velo: 0.0646, loss_dir: 0.5319, loss_attr: 0.5338, loss: 4.9419, grad_norm: 7.2235
2021-08-16 18:55:06,711 - mmdet - INFO - Epoch [2][2000/2217] lr: 8.000e-03, eta: 12:52:24, time: 2.069, data_time: 0.056, memory: 20195, loss_cls: 0.3097, loss_offset: 0.7318, loss_depth: 0.8947, loss_size: 0.9323, loss_rotsin: 0.3280, loss_centerness: 0.5809, loss_velo: 0.0613, loss_dir: 0.5379, loss_attr: 0.5191, loss: 4.8957, grad_norm: 6.7919
2021-08-16 18:56:50,664 - mmdet - INFO - Epoch [2][2050/2217] lr: 8.000e-03, eta: 12:50:43, time: 2.079, data_time: 0.054, memory: 20195, loss_cls: 0.3135, loss_offset: 0.7372, loss_depth: 0.9369, loss_size: 0.9519, loss_rotsin: 0.3303, loss_centerness: 0.5810, loss_velo: 0.0605, loss_dir: 0.5361, loss_attr: 0.5314, loss: 4.9787, grad_norm: 7.6044
2021-08-16 18:58:34,233 - mmdet - INFO - Epoch [2][2100/2217] lr: 8.000e-03, eta: 12:49:00, time: 2.071, data_time: 0.056, memory: 20195, loss_cls: 0.3076, loss_offset: 0.7369, loss_depth: 1.0040, loss_size: 0.9274, loss_rotsin: 0.3202, loss_centerness: 0.5806, loss_velo: 0.0628, loss_dir: 0.5281, loss_attr: 0.5010, loss: 4.9686, grad_norm: 8.0424
2021-08-16 19:00:17,584 - mmdet - INFO - Epoch [2][2150/2217] lr: 8.000e-03, eta: 12:47:15, time: 2.067, data_time: 0.054, memory: 20195, loss_cls: 0.3063, loss_offset: 0.7286, loss_depth: 0.9032, loss_size: 0.9042, loss_rotsin: 0.3215, loss_centerness: 0.5805, loss_velo: 0.0609, loss_dir: 0.5373, loss_attr: 0.5144, loss: 4.8568, grad_norm: 6.8561
2021-08-16 19:02:00,844 - mmdet - INFO - Epoch [2][2200/2217] lr: 8.000e-03, eta: 12:45:31, time: 2.065, data_time: 0.056, memory: 20195, loss_cls: 0.3113, loss_offset: 0.7323, loss_depth: 0.9402, loss_size: 0.9770, loss_rotsin: 0.3279, loss_centerness: 0.5808, loss_velo: 0.0631, loss_dir: 0.5338, loss_attr: 0.5312, loss: 4.9975, grad_norm: 7.6288
2021-08-16 19:02:36,439 - mmdet - INFO - Saving checkpoint at 2 epochs
2021-08-16 19:04:27,864 - mmdet - INFO - Epoch [3][50/2217] lr: 8.000e-03, eta: 12:40:52, time: 2.208, data_time: 0.201, memory: 20195, loss_cls: 0.3013, loss_offset: 0.7192, loss_depth: 0.9649, loss_size: 0.8963, loss_rotsin: 0.3133, loss_centerness: 0.5804, loss_velo: 0.0606, loss_dir: 0.5229, loss_attr: 0.4672, loss: 4.8262, grad_norm: 8.0418
2021-08-16 19:06:10,537 - mmdet - INFO - Epoch [3][100/2217] lr: 8.000e-03, eta: 12:39:06, time: 2.053, data_time: 0.050, memory: 20195, loss_cls: 0.3033, loss_offset: 0.7207, loss_depth: 0.9229, loss_size: 0.9194, loss_rotsin: 0.3211, loss_centerness: 0.5805, loss_velo: 0.0606, loss_dir: 0.5202, loss_attr: 0.4949, loss: 4.8435, grad_norm: 7.8808
2021-08-16 19:07:53,727 - mmdet - INFO - Epoch [3][150/2217] lr: 8.000e-03, eta: 12:37:23, time: 2.064, data_time: 0.049, memory: 20195, loss_cls: 0.3027, loss_offset: 0.7219, loss_depth: 0.9191, loss_size: 0.8752, loss_rotsin: 0.3150, loss_centerness: 0.5804, loss_velo: 0.0632, loss_dir: 0.5238, loss_attr: 0.4910, loss: 4.7923, grad_norm: 7.6230
2021-08-16 19:09:36,130 - mmdet - INFO - Epoch [3][200/2217] lr: 8.000e-03, eta: 12:35:36, time: 2.048, data_time: 0.047, memory: 20195, loss_cls: 0.3025, loss_offset: 0.7189, loss_depth: 0.9447, loss_size: 0.8908, loss_rotsin: 0.3200, loss_centerness: 0.5809, loss_velo: 0.0608, loss_dir: 0.5202, loss_attr: 0.4872, loss: 4.8261, grad_norm: 7.7094
2021-08-16 19:11:18,533 - mmdet - INFO - Epoch [3][250/2217] lr: 8.000e-03, eta: 12:33:50, time: 2.048, data_time: 0.054, memory: 20195, loss_cls: 0.3026, loss_offset: 0.7180, loss_depth: 0.8893, loss_size: 0.9107, loss_rotsin: 0.3131, loss_centerness: 0.5802, loss_velo: 0.0646, loss_dir: 0.5271, loss_attr: 0.4877, loss: 4.7932, grad_norm: 7.2070
2021-08-16 19:13:01,560 - mmdet - INFO - Epoch [3][300/2217] lr: 8.000e-03, eta: 12:32:06, time: 2.061, data_time: 0.052, memory: 20195, loss_cls: 0.2979, loss_offset: 0.7086, loss_depth: 0.8826, loss_size: 0.8630, loss_rotsin: 0.3189, loss_centerness: 0.5797, loss_velo: 0.0611, loss_dir: 0.5197, loss_attr: 0.4656, loss: 4.6969, grad_norm: 7.2622
2021-08-16 19:14:44,384 - mmdet - INFO - Epoch [3][350/2217] lr: 8.000e-03, eta: 12:30:21, time: 2.056, data_time: 0.049, memory: 20195, loss_cls: 0.3043, loss_offset: 0.7205, loss_depth: 0.9779, loss_size: 0.8695, loss_rotsin: 0.3193, loss_centerness: 0.5800, loss_velo: 0.0611, loss_dir: 0.5250, loss_attr: 0.5068, loss: 4.8644, grad_norm: 11.6729
2021-08-16 19:16:27,055 - mmdet - INFO - Epoch [3][400/2217] lr: 8.000e-03, eta: 12:28:36, time: 2.053, data_time: 0.049, memory: 20195, loss_cls: 0.3054, loss_offset: 0.7293, loss_depth: 0.9273, loss_size: 0.9022, loss_rotsin: 0.3175, loss_centerness: 0.5807, loss_velo: 0.0627, loss_dir: 0.5305, loss_attr: 0.5068, loss: 4.8625, grad_norm: 7.8143
2021-08-16 19:18:09,843 - mmdet - INFO - Epoch [3][450/2217] lr: 8.000e-03, eta: 12:26:51, time: 2.056, data_time: 0.053, memory: 20195, loss_cls: 0.3062, loss_offset: 0.7255, loss_depth: 1.0082, loss_size: 0.9249, loss_rotsin: 0.3168, loss_centerness: 0.5803, loss_velo: 0.0633, loss_dir: 0.5234, loss_attr: 0.5096, loss: 4.9582, grad_norm: 8.0820
2021-08-16 19:19:52,752 - mmdet - INFO - Epoch [3][500/2217] lr: 8.000e-03, eta: 12:25:06, time: 2.058, data_time: 0.049, memory: 20195, loss_cls: 0.3027, loss_offset: 0.7216, loss_depth: 0.8787, loss_size: 0.8850, loss_rotsin: 0.3193, loss_centerness: 0.5801, loss_velo: 0.0605, loss_dir: 0.5196, loss_attr: 0.4949, loss: 4.7625, grad_norm: 7.3173
2021-08-16 19:21:36,080 - mmdet - INFO - Epoch [3][550/2217] lr: 8.000e-03, eta: 12:23:24, time: 2.066, data_time: 0.051, memory: 20195, loss_cls: 0.3044, loss_offset: 0.7187, loss_depth: 1.1351, loss_size: 0.8856, loss_rotsin: 0.3221, loss_centerness: 0.5798, loss_velo: 0.0612, loss_dir: 0.5295, loss_attr: 0.4950, loss: 5.0311, grad_norm: 9.8307
2021-08-16 19:23:19,314 - mmdet - INFO - Epoch [3][600/2217] lr: 8.000e-03, eta: 12:21:41, time: 2.065, data_time: 0.050, memory: 20195, loss_cls: 0.2987, loss_offset: 0.7174, loss_depth: 0.8957, loss_size: 0.8923, loss_rotsin: 0.3062, loss_centerness: 0.5803, loss_velo: 0.0636, loss_dir: 0.5115, loss_attr: 0.4908, loss: 4.7565, grad_norm: 7.2927
2021-08-16 19:25:02,081 - mmdet - INFO - Epoch [3][650/2217] lr: 8.000e-03, eta: 12:19:56, time: 2.055, data_time: 0.051, memory: 20195, loss_cls: 0.3002, loss_offset: 0.7261, loss_depth: 0.9057, loss_size: 0.8767, loss_rotsin: 0.3260, loss_centerness: 0.5806, loss_velo: 0.0589, loss_dir: 0.5339, loss_attr: 0.5031, loss: 4.8113, grad_norm: 7.5178
2021-08-16 19:26:45,271 - mmdet - INFO - Epoch [3][700/2217] lr: 8.000e-03, eta: 12:18:13, time: 2.064, data_time: 0.050, memory: 20195, loss_cls: 0.2997, loss_offset: 0.7164, loss_depth: 0.9486, loss_size: 0.8821, loss_rotsin: 0.3094, loss_centerness: 0.5794, loss_velo: 0.0644, loss_dir: 0.5173, loss_attr: 0.4794, loss: 4.7967, grad_norm: 8.3280
2021-08-16 19:28:28,592 - mmdet - INFO - Epoch [3][750/2217] lr: 8.000e-03, eta: 12:16:31, time: 2.066, data_time: 0.051, memory: 20195, loss_cls: 0.3004, loss_offset: 0.7093, loss_depth: 0.9121, loss_size: 0.8981, loss_rotsin: 0.3006, loss_centerness: 0.5795, loss_velo: 0.0617, loss_dir: 0.5014, loss_attr: 0.4973, loss: 4.7605, grad_norm: 7.7729
2021-08-16 19:30:11,840 - mmdet - INFO - Epoch [3][800/2217] lr: 8.000e-03, eta: 12:14:48, time: 2.065, data_time: 0.049, memory: 20195, loss_cls: 0.3005, loss_offset: 0.7168, loss_depth: 0.9359, loss_size: 0.9000, loss_rotsin: 0.3093, loss_centerness: 0.5800, loss_velo: 0.0619, loss_dir: 0.5137, loss_attr: 0.4774, loss: 4.7954, grad_norm: 7.7458
2021-08-16 19:31:55,460 - mmdet - INFO - Epoch [3][850/2217] lr: 8.000e-03, eta: 12:13:07, time: 2.072, data_time: 0.051, memory: 20195, loss_cls: 0.2996, loss_offset: 0.7121, loss_depth: 0.8341, loss_size: 0.8883, loss_rotsin: 0.3142, loss_centerness: 0.5795, loss_velo: 0.0620, loss_dir: 0.5192, loss_attr: 0.4759, loss: 4.6849, grad_norm: 6.3690
2021-08-16 19:33:39,072 - mmdet - INFO - Epoch [3][900/2217] lr: 8.000e-03, eta: 12:11:26, time: 2.072, data_time: 0.050, memory: 20195, loss_cls: 0.2956, loss_offset: 0.7061, loss_depth: 0.8566, loss_size: 0.8650, loss_rotsin: 0.3107, loss_centerness: 0.5795, loss_velo: 0.0580, loss_dir: 0.5146, loss_attr: 0.4796, loss: 4.6657, grad_norm: 7.0100
2021-08-16 19:35:23,138 - mmdet - INFO - Epoch [3][950/2217] lr: 8.000e-03, eta: 12:09:46, time: 2.081, data_time: 0.053, memory: 20195, loss_cls: 0.2982, loss_offset: 0.7011, loss_depth: 0.8309, loss_size: 0.8465, loss_rotsin: 0.3079, loss_centerness: 0.5793, loss_velo: 0.0605, loss_dir: 0.5169, loss_attr: 0.4697, loss: 4.6110, grad_norm: 6.6729
2021-08-16 19:37:06,743 - mmdet - INFO - Epoch [3][1000/2217] lr: 8.000e-03, eta: 12:08:04, time: 2.072, data_time: 0.053, memory: 20195, loss_cls: 0.2967, loss_offset: 0.7083, loss_depth: 0.8964, loss_size: 0.8749, loss_rotsin: 0.3025, loss_centerness: 0.5795, loss_velo: 0.0623, loss_dir: 0.5148, loss_attr: 0.4806, loss: 4.7160, grad_norm: 7.2904
2021-08-16 19:38:50,284 - mmdet - INFO - Epoch [3][1050/2217] lr: 8.000e-03, eta: 12:06:23, time: 2.071, data_time: 0.052, memory: 20195, loss_cls: 0.2956, loss_offset: 0.7021, loss_depth: 0.8489, loss_size: 0.8414, loss_rotsin: 0.2968, loss_centerness: 0.5793, loss_velo: 0.0621, loss_dir: 0.4988, loss_attr: 0.4696, loss: 4.5945, grad_norm: 6.9977
2021-08-16 19:40:34,496 - mmdet - INFO - Epoch [3][1100/2217] lr: 8.000e-03, eta: 12:04:43, time: 2.084, data_time: 0.053, memory: 20195, loss_cls: 0.2956, loss_offset: 0.7060, loss_depth: 0.9248, loss_size: 0.8557, loss_rotsin: 0.3079, loss_centerness: 0.5796, loss_velo: 0.0607, loss_dir: 0.5112, loss_attr: 0.4622, loss: 4.7036, grad_norm: 7.7005
2021-08-16 19:42:18,382 - mmdet - INFO - Epoch [3][1150/2217] lr: 8.000e-03, eta: 12:03:03, time: 2.078, data_time: 0.047, memory: 20195, loss_cls: 0.2997, loss_offset: 0.7102, loss_depth: 0.8837, loss_size: 0.9119, loss_rotsin: 0.3047, loss_centerness: 0.5793, loss_velo: 0.0595, loss_dir: 0.5127, loss_attr: 0.4850, loss: 4.7468, grad_norm: 7.2993
2021-08-16 19:44:01,945 - mmdet - INFO - Epoch [3][1200/2217] lr: 8.000e-03, eta: 12:01:21, time: 2.071, data_time: 0.049, memory: 20195, loss_cls: 0.2956, loss_offset: 0.7026, loss_depth: 0.8769, loss_size: 0.8747, loss_rotsin: 0.3045, loss_centerness: 0.5796, loss_velo: 0.0606, loss_dir: 0.5046, loss_attr: 0.4612, loss: 4.6603, grad_norm: 6.9835
2021-08-16 19:45:45,736 - mmdet - INFO - Epoch [3][1250/2217] lr: 8.000e-03, eta: 11:59:40, time: 2.076, data_time: 0.050, memory: 20195, loss_cls: 0.2943, loss_offset: 0.7083, loss_depth: 0.9057, loss_size: 0.8679, loss_rotsin: 0.2947, loss_centerness: 0.5797, loss_velo: 0.0631, loss_dir: 0.5048, loss_attr: 0.4710, loss: 4.6895, grad_norm: 7.5434
2021-08-16 19:47:29,622 - mmdet - INFO - Epoch [3][1300/2217] lr: 8.000e-03, eta: 11:57:59, time: 2.078, data_time: 0.052, memory: 20195, loss_cls: 0.2935, loss_offset: 0.6956, loss_depth: 0.9173, loss_size: 0.8618, loss_rotsin: 0.3030, loss_centerness: 0.5791, loss_velo: 0.0570, loss_dir: 0.5003, loss_attr: 0.4735, loss: 4.6812, grad_norm: 8.1286
2021-08-16 19:49:13,951 - mmdet - INFO - Epoch [3][1350/2217] lr: 8.000e-03, eta: 11:56:20, time: 2.087, data_time: 0.055, memory: 20195, loss_cls: 0.2970, loss_offset: 0.7008, loss_depth: 0.8961, loss_size: 0.8550, loss_rotsin: 0.2976, loss_centerness: 0.5800, loss_velo: 0.0608, loss_dir: 0.5072, loss_attr: 0.4661, loss: 4.6605, grad_norm: 7.5379
2021-08-16 19:50:58,129 - mmdet - INFO - Epoch [3][1400/2217] lr: 8.000e-03, eta: 11:54:40, time: 2.084, data_time: 0.051, memory: 20195, loss_cls: 0.2919, loss_offset: 0.7009, loss_depth: 0.8759, loss_size: 0.8593, loss_rotsin: 0.2988, loss_centerness: 0.5789, loss_velo: 0.0589, loss_dir: 0.5083, loss_attr: 0.4612, loss: 4.6340, grad_norm: 7.2337
2021-08-16 19:52:41,349 - mmdet - INFO - Epoch [3][1450/2217] lr: 8.000e-03, eta: 11:52:57, time: 2.064, data_time: 0.048, memory: 20195, loss_cls: 0.2948, loss_offset: 0.6954, loss_depth: 0.9349, loss_size: 0.8484, loss_rotsin: 0.2947, loss_centerness: 0.5789, loss_velo: 0.0616, loss_dir: 0.5010, loss_attr: 0.4554, loss: 4.6651, grad_norm: 8.3722
2021-08-16 19:54:25,724 - mmdet - INFO - Epoch [3][1500/2217] lr: 8.000e-03, eta: 11:51:18, time: 2.087, data_time: 0.052, memory: 20195, loss_cls: 0.2913, loss_offset: 0.6936, loss_depth: 0.8719, loss_size: 0.8371, loss_rotsin: 0.2916, loss_centerness: 0.5787, loss_velo: 0.0604, loss_dir: 0.4964, loss_attr: 0.4624, loss: 4.5833, grad_norm: 7.4705
2021-08-16 19:56:10,292 - mmdet - INFO - Epoch [3][1550/2217] lr: 8.000e-03, eta: 11:49:39, time: 2.091, data_time: 0.053, memory: 20195, loss_cls: 0.2953, loss_offset: 0.7037, loss_depth: 1.0270, loss_size: 0.8629, loss_rotsin: 0.2991, loss_centerness: 0.5792, loss_velo: 0.0618, loss_dir: 0.5066, loss_attr: 0.4723, loss: 4.8078, grad_norm: 8.7752
2021-08-16 19:57:54,027 - mmdet - INFO - Epoch [3][1600/2217] lr: 8.000e-03, eta: 11:47:58, time: 2.075, data_time: 0.050, memory: 20195, loss_cls: 0.2944, loss_offset: 0.7068, loss_depth: 0.8860, loss_size: 0.8486, loss_rotsin: 0.2994, loss_centerness: 0.5797, loss_velo: 0.0585, loss_dir: 0.5077, loss_attr: 0.4587, loss: 4.6398, grad_norm: 7.1625
2021-08-16 19:59:37,660 - mmdet - INFO - Epoch [3][1650/2217] lr: 8.000e-03, eta: 11:46:16, time: 2.073, data_time: 0.048, memory: 20195, loss_cls: 0.2964, loss_offset: 0.6935, loss_depth: 0.8490, loss_size: 0.8820, loss_rotsin: 0.2998, loss_centerness: 0.5794, loss_velo: 0.0631, loss_dir: 0.4989, loss_attr: 0.4518, loss: 4.6139, grad_norm: 7.0048
2021-08-16 20:01:21,739 - mmdet - INFO - Epoch [3][1700/2217] lr: 8.000e-03, eta: 11:44:35, time: 2.082, data_time: 0.054, memory: 20195, loss_cls: 0.2950, loss_offset: 0.6932, loss_depth: 1.0472, loss_size: 0.8549, loss_rotsin: 0.2953, loss_centerness: 0.5787, loss_velo: 0.0641, loss_dir: 0.4964, loss_attr: 0.4623, loss: 4.7870, grad_norm: 9.1054
2021-08-16 20:03:05,868 - mmdet - INFO - Epoch [3][1750/2217] lr: 8.000e-03, eta: 11:42:55, time: 2.083, data_time: 0.055, memory: 20195, loss_cls: 0.3268, loss_offset: 0.7669, loss_depth: 0.9675, loss_size: 1.0141, loss_rotsin: 0.3255, loss_centerness: 0.5821, loss_velo: 0.0594, loss_dir: 0.5380, loss_attr: 0.5565, loss: 5.1368, grad_norm: 30.7481
2021-08-16 20:04:49,428 - mmdet - INFO - Epoch [3][1800/2217] lr: 8.000e-03, eta: 11:41:12, time: 2.071, data_time: 0.053, memory: 20195, loss_cls: 0.3686, loss_offset: 0.8612, loss_depth: 1.1252, loss_size: 1.1618, loss_rotsin: 0.3498, loss_centerness: 0.5862, loss_velo: 0.0588, loss_dir: 0.6039, loss_attr: 0.6748, loss: 5.7902, grad_norm: 10.2100
2021-08-16 20:06:32,809 - mmdet - INFO - Epoch [3][1850/2217] lr: 8.000e-03, eta: 11:39:29, time: 2.068, data_time: 0.051, memory: 20195, loss_cls: 0.3304, loss_offset: 0.7770, loss_depth: 0.9927, loss_size: 1.0229, loss_rotsin: 0.3196, loss_centerness: 0.5826, loss_velo: 0.0617, loss_dir: 0.5572, loss_attr: 0.5593, loss: 5.2034, grad_norm: 7.6224
2021-08-16 20:08:17,372 - mmdet - INFO - Epoch [3][1900/2217] lr: 8.000e-03, eta: 11:37:50, time: 2.091, data_time: 0.054, memory: 20195, loss_cls: 0.3209, loss_offset: 0.7582, loss_depth: 0.9799, loss_size: 0.9547, loss_rotsin: 0.3143, loss_centerness: 0.5817, loss_velo: 0.0668, loss_dir: 0.5352, loss_attr: 0.5532, loss: 5.0649, grad_norm: 8.0874
2021-08-16 20:10:01,944 - mmdet - INFO - Epoch [3][1950/2217] lr: 8.000e-03, eta: 11:36:11, time: 2.091, data_time: 0.054, memory: 20195, loss_cls: 0.3152, loss_offset: 0.7389, loss_depth: 0.8952, loss_size: 0.9331, loss_rotsin: 0.3007, loss_centerness: 0.5811, loss_velo: 0.0620, loss_dir: 0.5195, loss_attr: 0.5124, loss: 4.8582, grad_norm: 6.8111
2021-08-16 20:11:46,183 - mmdet - INFO - Epoch [3][2000/2217] lr: 8.000e-03, eta: 11:34:31, time: 2.085, data_time: 0.055, memory: 20195, loss_cls: 0.3103, loss_offset: 0.7344, loss_depth: 0.8968, loss_size: 0.9564, loss_rotsin: 0.3101, loss_centerness: 0.5808, loss_velo: 0.0616, loss_dir: 0.5287, loss_attr: 0.5102, loss: 4.8894, grad_norm: 7.0890
2021-08-16 20:13:30,711 - mmdet - INFO - Epoch [3][2050/2217] lr: 8.000e-03, eta: 11:32:51, time: 2.091, data_time: 0.056, memory: 20195, loss_cls: 0.3047, loss_offset: 0.7283, loss_depth: 0.9362, loss_size: 0.8935, loss_rotsin: 0.3050, loss_centerness: 0.5808, loss_velo: 0.0611, loss_dir: 0.5166, loss_attr: 0.4749, loss: 4.8010, grad_norm: 7.7967
2021-08-16 20:15:15,527 - mmdet - INFO - Epoch [3][2100/2217] lr: 8.000e-03, eta: 11:31:13, time: 2.096, data_time: 0.051, memory: 20195, loss_cls: 0.3058, loss_offset: 0.7264, loss_depth: 0.9402, loss_size: 0.9008, loss_rotsin: 0.3080, loss_centerness: 0.5801, loss_velo: 0.0612, loss_dir: 0.5095, loss_attr: 0.4787, loss: 4.8108, grad_norm: 7.9061
2021-08-16 20:16:59,984 - mmdet - INFO - Epoch [3][2150/2217] lr: 8.000e-03, eta: 11:29:33, time: 2.089, data_time: 0.052, memory: 20195, loss_cls: 0.3021, loss_offset: 0.7210, loss_depth: 0.8876, loss_size: 0.8941, loss_rotsin: 0.3044, loss_centerness: 0.5807, loss_velo: 0.0601, loss_dir: 0.5159, loss_attr: 0.4786, loss: 4.7445, grad_norm: 7.0963
2021-08-16 20:18:44,255 - mmdet - INFO - Epoch [3][2200/2217] lr: 8.000e-03, eta: 11:27:52, time: 2.085, data_time: 0.049, memory: 20195, loss_cls: 0.2998, loss_offset: 0.7103, loss_depth: 0.9274, loss_size: 0.8914, loss_rotsin: 0.2974, loss_centerness: 0.5795, loss_velo: 0.0635, loss_dir: 0.5010, loss_attr: 0.4844, loss: 4.7549, grad_norm: 7.6259
2021-08-16 20:19:20,356 - mmdet - INFO - Saving checkpoint at 3 epochs
2021-08-16 20:21:12,881 - mmdet - INFO - Epoch [4][50/2217] lr: 8.000e-03, eta: 11:24:14, time: 2.230, data_time: 0.195, memory: 20195, loss_cls: 0.3002, loss_offset: 0.7116, loss_depth: 0.8629, loss_size: 0.8728, loss_rotsin: 0.3011, loss_centerness: 0.5799, loss_velo: 0.0634, loss_dir: 0.5102, loss_attr: 0.4493, loss: 4.6514, grad_norm: 7.4648
2021-08-16 20:22:56,057 - mmdet - INFO - Epoch [4][100/2217] lr: 8.000e-03, eta: 11:22:31, time: 2.064, data_time: 0.050, memory: 20195, loss_cls: 0.2951, loss_offset: 0.7062, loss_depth: 0.8396, loss_size: 0.8410, loss_rotsin: 0.2933, loss_centerness: 0.5793, loss_velo: 0.0589, loss_dir: 0.4985, loss_attr: 0.4557, loss: 4.5675, grad_norm: 7.0144
2021-08-16 20:24:39,580 - mmdet - INFO - Epoch [4][150/2217] lr: 8.000e-03, eta: 11:20:49, time: 2.070, data_time: 0.052, memory: 20195, loss_cls: 0.2930, loss_offset: 0.6945, loss_depth: 0.8528, loss_size: 0.8525, loss_rotsin: 0.2869, loss_centerness: 0.5788, loss_velo: 0.0615, loss_dir: 0.4897, loss_attr: 0.4521, loss: 4.5618, grad_norm: 7.3271
2021-08-16 20:26:23,062 - mmdet - INFO - Epoch [4][200/2217] lr: 8.000e-03, eta: 11:19:07, time: 2.070, data_time: 0.051, memory: 20195, loss_cls: 0.2960, loss_offset: 0.6997, loss_depth: 0.8644, loss_size: 0.8390, loss_rotsin: 0.2943, loss_centerness: 0.5790, loss_velo: 0.0626, loss_dir: 0.5047, loss_attr: 0.4458, loss: 4.5857, grad_norm: 7.6553
2021-08-16 20:28:07,398 - mmdet - INFO - Epoch [4][250/2217] lr: 8.000e-03, eta: 11:17:27, time: 2.087, data_time: 0.054, memory: 20195, loss_cls: 0.2914, loss_offset: 0.6985, loss_depth: 0.8407, loss_size: 0.8588, loss_rotsin: 0.2880, loss_centerness: 0.5794, loss_velo: 0.0587, loss_dir: 0.4941, loss_attr: 0.4259, loss: 4.5356, grad_norm: 7.2612
2021-08-16 20:29:51,497 - mmdet - INFO - Epoch [4][300/2217] lr: 8.000e-03, eta: 11:15:46, time: 2.082, data_time: 0.054, memory: 20195, loss_cls: 0.2895, loss_offset: 0.6882, loss_depth: 0.8524, loss_size: 0.8464, loss_rotsin: 0.2878, loss_centerness: 0.5785, loss_velo: 0.0579, loss_dir: 0.4909, loss_attr: 0.4300, loss: 4.5218, grad_norm: 7.6035
2021-08-16 20:31:35,494 - mmdet - INFO - Epoch [4][350/2217] lr: 8.000e-03, eta: 11:14:05, time: 2.080, data_time: 0.054, memory: 20195, loss_cls: 0.3103, loss_offset: 0.7306, loss_depth: 0.9977, loss_size: 0.9121, loss_rotsin: 0.3026, loss_centerness: 0.5803, loss_velo: 0.0610, loss_dir: 0.5149, loss_attr: 0.4904, loss: 4.8999, grad_norm: 12.3719
2021-08-16 20:33:19,740 - mmdet - INFO - Epoch [4][400/2217] lr: 8.000e-03, eta: 11:12:25, time: 2.085, data_time: 0.055, memory: 20195, loss_cls: 0.3150, loss_offset: 0.7425, loss_depth: 1.1502, loss_size: 0.9284, loss_rotsin: 0.2986, loss_centerness: 0.5816, loss_velo: 0.0612, loss_dir: 0.5233, loss_attr: 0.5085, loss: 5.1093, grad_norm: 11.2660
2021-08-16 20:35:04,005 - mmdet - INFO - Epoch [4][450/2217] lr: 8.000e-03, eta: 11:10:45, time: 2.085, data_time: 0.051, memory: 20207, loss_cls: 0.3077, loss_offset: 0.7325, loss_depth: 0.9598, loss_size: 0.9087, loss_rotsin: 0.2966, loss_centerness: 0.5806, loss_velo: 0.0630, loss_dir: 0.5179, loss_attr: 0.4854, loss: 4.8522, grad_norm: 9.2546
2021-08-16 20:36:48,320 - mmdet - INFO - Epoch [4][500/2217] lr: 8.000e-03, eta: 11:09:05, time: 2.086, data_time: 0.051, memory: 20207, loss_cls: 0.2994, loss_offset: 0.7073, loss_depth: 0.9145, loss_size: 0.8524, loss_rotsin: 0.2865, loss_centerness: 0.5792, loss_velo: 0.0590, loss_dir: 0.4939, loss_attr: 0.4602, loss: 4.6524, grad_norm: 7.9425
2021-08-16 20:38:32,681 - mmdet - INFO - Epoch [4][550/2217] lr: 8.000e-03, eta: 11:07:25, time: 2.087, data_time: 0.053, memory: 20207, loss_cls: 0.2955, loss_offset: 0.7005, loss_depth: 0.9289, loss_size: 0.8378, loss_rotsin: 0.2859, loss_centerness: 0.5794, loss_velo: 0.0646, loss_dir: 0.5003, loss_attr: 0.4691, loss: 4.6620, grad_norm: 7.8237
2021-08-16 20:40:16,656 - mmdet - INFO - Epoch [4][600/2217] lr: 8.000e-03, eta: 11:05:44, time: 2.079, data_time: 0.050, memory: 20207, loss_cls: 0.2953, loss_offset: 0.7015, loss_depth: 0.8544, loss_size: 0.8684, loss_rotsin: 0.2873, loss_centerness: 0.5790, loss_velo: 0.0651, loss_dir: 0.4911, loss_attr: 0.4390, loss: 4.5811, grad_norm: 6.9072
2021-08-16 20:42:00,974 - mmdet - INFO - Epoch [4][650/2217] lr: 8.000e-03, eta: 11:04:04, time: 2.086, data_time: 0.053, memory: 20207, loss_cls: 0.2907, loss_offset: 0.6979, loss_depth: 0.8418, loss_size: 0.8225, loss_rotsin: 0.2869, loss_centerness: 0.5788, loss_velo: 0.0609, loss_dir: 0.4943, loss_attr: 0.4225, loss: 4.4962, grad_norm: 7.0927
2021-08-16 20:43:46,538 - mmdet - INFO - Epoch [4][700/2217] lr: 8.000e-03, eta: 11:02:27, time: 2.111, data_time: 0.052, memory: 20207, loss_cls: 0.2933, loss_offset: 0.7008, loss_depth: 0.8872, loss_size: 0.8383, loss_rotsin: 0.2887, loss_centerness: 0.5785, loss_velo: 0.0603, loss_dir: 0.4969, loss_attr: 0.4497, loss: 4.5937, grad_norm: 7.5745
2021-08-16 20:45:32,202 - mmdet - INFO - Epoch [4][750/2217] lr: 8.000e-03, eta: 11:00:50, time: 2.113, data_time: 0.051, memory: 20207, loss_cls: 0.2903, loss_offset: 0.6969, loss_depth: 0.9085, loss_size: 0.8430, loss_rotsin: 0.2831, loss_centerness: 0.5791, loss_velo: 0.0589, loss_dir: 0.4964, loss_attr: 0.4455, loss: 4.6016, grad_norm: 7.9011
2021-08-16 20:47:17,308 - mmdet - INFO - Epoch [4][800/2217] lr: 8.000e-03, eta: 10:59:11, time: 2.102, data_time: 0.051, memory: 20207, loss_cls: 0.2917, loss_offset: 0.6916, loss_depth: 0.8771, loss_size: 0.8406, loss_rotsin: 0.2877, loss_centerness: 0.5790, loss_velo: 0.0639, loss_dir: 0.4879, loss_attr: 0.4483, loss: 4.5678, grad_norm: 7.9740
2021-08-16 20:49:02,161 - mmdet - INFO - Epoch [4][850/2217] lr: 8.000e-03, eta: 10:57:32, time: 2.097, data_time: 0.048, memory: 20207, loss_cls: 0.2878, loss_offset: 0.6880, loss_depth: 0.9237, loss_size: 0.8107, loss_rotsin: 0.2850, loss_centerness: 0.5789, loss_velo: 0.0620, loss_dir: 0.4862, loss_attr: 0.4384, loss: 4.5606, grad_norm: 8.1332
2021-08-16 20:50:46,591 - mmdet - INFO - Epoch [4][900/2217] lr: 8.000e-03, eta: 10:55:52, time: 2.089, data_time: 0.050, memory: 20207, loss_cls: 0.2896, loss_offset: 0.6887, loss_depth: 0.8354, loss_size: 0.8214, loss_rotsin: 0.2812, loss_centerness: 0.5785, loss_velo: 0.0638, loss_dir: 0.4967, loss_attr: 0.4407, loss: 4.4961, grad_norm: 7.2070
2021-08-16 20:52:30,849 - mmdet - INFO - Epoch [4][950/2217] lr: 8.000e-03, eta: 10:54:11, time: 2.085, data_time: 0.050, memory: 20207, loss_cls: 0.2900, loss_offset: 0.6838, loss_depth: 0.9332, loss_size: 0.8396, loss_rotsin: 0.2843, loss_centerness: 0.5784, loss_velo: 0.0628, loss_dir: 0.4926, loss_attr: 0.4482, loss: 4.6129, grad_norm: 8.2644
2021-08-16 20:54:15,207 - mmdet - INFO - Epoch [4][1000/2217] lr: 8.000e-03, eta: 10:52:30, time: 2.087, data_time: 0.050, memory: 20207, loss_cls: 0.2836, loss_offset: 0.6794, loss_depth: 0.8687, loss_size: 0.8099, loss_rotsin: 0.2821, loss_centerness: 0.5788, loss_velo: 0.0642, loss_dir: 0.4873, loss_attr: 0.4221, loss: 4.4761, grad_norm: 7.3494
2021-08-16 20:55:59,685 - mmdet - INFO - Epoch [4][1050/2217] lr: 8.000e-03, eta: 10:50:50, time: 2.090, data_time: 0.050, memory: 20207, loss_cls: 0.2838, loss_offset: 0.6862, loss_depth: 0.8277, loss_size: 0.8236, loss_rotsin: 0.2834, loss_centerness: 0.5788, loss_velo: 0.0577, loss_dir: 0.4884, loss_attr: 0.4105, loss: 4.4400, grad_norm: 6.9338
2021-08-16 20:57:43,748 - mmdet - INFO - Epoch [4][1100/2217] lr: 8.000e-03, eta: 10:49:09, time: 2.081, data_time: 0.050, memory: 20207, loss_cls: 0.2900, loss_offset: 0.6941, loss_depth: 0.8354, loss_size: 0.8213, loss_rotsin: 0.2867, loss_centerness: 0.5791, loss_velo: 0.0572, loss_dir: 0.4926, loss_attr: 0.4459, loss: 4.5023, grad_norm: 7.3631
2021-08-16 20:59:27,379 - mmdet - INFO - Epoch [4][1150/2217] lr: 8.000e-03, eta: 10:47:26, time: 2.073, data_time: 0.049, memory: 20207, loss_cls: 0.2893, loss_offset: 0.6910, loss_depth: 0.8740, loss_size: 0.8123, loss_rotsin: 0.2847, loss_centerness: 0.5785, loss_velo: 0.0622, loss_dir: 0.4868, loss_attr: 0.4385, loss: 4.5174, grad_norm: 7.8603
2021-08-16 21:01:11,573 - mmdet - INFO - Epoch [4][1200/2217] lr: 8.000e-03, eta: 10:45:45, time: 2.084, data_time: 0.049, memory: 20207, loss_cls: 0.2835, loss_offset: 0.6826, loss_depth: 0.9081, loss_size: 0.8066, loss_rotsin: 0.2727, loss_centerness: 0.5789, loss_velo: 0.0618, loss_dir: 0.4745, loss_attr: 0.4118, loss: 4.4805, grad_norm: 7.6063
2021-08-16 21:02:55,144 - mmdet - INFO - Epoch [4][1250/2217] lr: 8.000e-03, eta: 10:44:02, time: 2.071, data_time: 0.051, memory: 20207, loss_cls: 0.2836, loss_offset: 0.6801, loss_depth: 0.8600, loss_size: 0.8090, loss_rotsin: 0.2776, loss_centerness: 0.5782, loss_velo: 0.0629, loss_dir: 0.4812, loss_attr: 0.4130, loss: 4.4457, grad_norm: 7.5324
2021-08-16 21:04:39,078 - mmdet - INFO - Epoch [4][1300/2217] lr: 8.000e-03, eta: 10:42:21, time: 2.079, data_time: 0.053, memory: 20207, loss_cls: 0.2846, loss_offset: 0.6768, loss_depth: 0.8103, loss_size: 0.7985, loss_rotsin: 0.2856, loss_centerness: 0.5782, loss_velo: 0.0626, loss_dir: 0.4806, loss_attr: 0.4108, loss: 4.3879, grad_norm: 6.9776
2021-08-16 21:06:22,682 - mmdet - INFO - Epoch [4][1350/2217] lr: 8.000e-03, eta: 10:40:38, time: 2.072, data_time: 0.049, memory: 20207, loss_cls: 0.2881, loss_offset: 0.6901, loss_depth: 0.8638, loss_size: 0.8165, loss_rotsin: 0.2844, loss_centerness: 0.5783, loss_velo: 0.0606, loss_dir: 0.4881, loss_attr: 0.4267, loss: 4.4968, grad_norm: 7.6781
2021-08-16 21:08:06,509 - mmdet - INFO - Epoch [4][1400/2217] lr: 8.000e-03, eta: 10:38:56, time: 2.077, data_time: 0.053, memory: 20207, loss_cls: 0.2798, loss_offset: 0.6713, loss_depth: 0.7944, loss_size: 0.8158, loss_rotsin: 0.2750, loss_centerness: 0.5777, loss_velo: 0.0613, loss_dir: 0.4754, loss_attr: 0.4136, loss: 4.3644, grad_norm: 6.5900
2021-08-16 21:09:50,964 - mmdet - INFO - Epoch [4][1450/2217] lr: 8.000e-03, eta: 10:37:15, time: 2.089, data_time: 0.056, memory: 20207, loss_cls: 0.2863, loss_offset: 0.6850, loss_depth: 0.9229, loss_size: 0.8101, loss_rotsin: 0.2799, loss_centerness: 0.5783, loss_velo: 0.0620, loss_dir: 0.4778, loss_attr: 0.4127, loss: 4.5150, grad_norm: 8.5720
2021-08-16 21:11:35,137 - mmdet - INFO - Epoch [4][1500/2217] lr: 8.000e-03, eta: 10:35:34, time: 2.083, data_time: 0.054, memory: 20207, loss_cls: 0.2846, loss_offset: 0.6703, loss_depth: 0.9316, loss_size: 0.8109, loss_rotsin: 0.2686, loss_centerness: 0.5777, loss_velo: 0.0614, loss_dir: 0.4672, loss_attr: 0.4133, loss: 4.4856, grad_norm: 8.1042
2021-08-16 21:13:19,693 - mmdet - INFO - Epoch [4][1550/2217] lr: 8.000e-03, eta: 10:33:53, time: 2.091, data_time: 0.054, memory: 20207, loss_cls: 0.2814, loss_offset: 0.6704, loss_depth: 0.8807, loss_size: 0.8104, loss_rotsin: 0.2711, loss_centerness: 0.5778, loss_velo: 0.0632, loss_dir: 0.4701, loss_attr: 0.4283, loss: 4.4532, grad_norm: 7.8003
2021-08-16 21:15:04,056 - mmdet - INFO - Epoch [4][1600/2217] lr: 8.000e-03, eta: 10:32:12, time: 2.087, data_time: 0.052, memory: 20207, loss_cls: 0.2850, loss_offset: 0.6780, loss_depth: 0.8067, loss_size: 0.8206, loss_rotsin: 0.2737, loss_centerness: 0.5787, loss_velo: 0.0626, loss_dir: 0.4821, loss_attr: 0.4400, loss: 4.4273, grad_norm: 7.1076
2021-08-16 21:16:48,946 - mmdet - INFO - Epoch [4][1650/2217] lr: 8.000e-03, eta: 10:30:32, time: 2.098, data_time: 0.053, memory: 20207, loss_cls: 0.2797, loss_offset: 0.6775, loss_depth: 0.8685, loss_size: 0.7901, loss_rotsin: 0.2769, loss_centerness: 0.5781, loss_velo: 0.0595, loss_dir: 0.4834, loss_attr: 0.4073, loss: 4.4211, grad_norm: 7.4738
2021-08-16 21:18:33,318 - mmdet - INFO - Epoch [4][1700/2217] lr: 8.000e-03, eta: 10:28:51, time: 2.087, data_time: 0.053, memory: 20207, loss_cls: 0.2804, loss_offset: 0.6735, loss_depth: 0.7656, loss_size: 0.7774, loss_rotsin: 0.2744, loss_centerness: 0.5780, loss_velo: 0.0608, loss_dir: 0.4790, loss_attr: 0.4107, loss: 4.2998, grad_norm: 6.4590
2021-08-16 21:20:17,359 - mmdet - INFO - Epoch [4][1750/2217] lr: 8.000e-03, eta: 10:27:09, time: 2.081, data_time: 0.054, memory: 20207, loss_cls: 0.2822, loss_offset: 0.6802, loss_depth: 0.8706, loss_size: 0.8025, loss_rotsin: 0.2784, loss_centerness: 0.5781, loss_velo: 0.0612, loss_dir: 0.4785, loss_attr: 0.4139, loss: 4.4456, grad_norm: 7.7342
2021-08-16 21:22:01,861 - mmdet - INFO - Epoch [4][1800/2217] lr: 8.000e-03, eta: 10:25:28, time: 2.090, data_time: 0.055, memory: 20207, loss_cls: 0.2824, loss_offset: 0.6695, loss_depth: 0.7988, loss_size: 0.8159, loss_rotsin: 0.2654, loss_centerness: 0.5779, loss_velo: 0.0606, loss_dir: 0.4720, loss_attr: 0.4157, loss: 4.3581, grad_norm: 6.4562
2021-08-16 21:23:46,784 - mmdet - INFO - Epoch [4][1850/2217] lr: 8.000e-03, eta: 10:23:48, time: 2.099, data_time: 0.053, memory: 20207, loss_cls: 0.2769, loss_offset: 0.6707, loss_depth: 0.8006, loss_size: 0.7809, loss_rotsin: 0.2750, loss_centerness: 0.5778, loss_velo: 0.0592, loss_dir: 0.4757, loss_attr: 0.4031, loss: 4.3200, grad_norm: 7.4455
2021-08-16 21:25:31,629 - mmdet - INFO - Epoch [4][1900/2217] lr: 8.000e-03, eta: 10:22:08, time: 2.097, data_time: 0.057, memory: 20207, loss_cls: 0.2818, loss_offset: 0.6769, loss_depth: 0.8211, loss_size: 0.7974, loss_rotsin: 0.2748, loss_centerness: 0.5778, loss_velo: 0.0593, loss_dir: 0.4695, loss_attr: 0.3988, loss: 4.3574, grad_norm: 7.3008
2021-08-16 21:27:15,781 - mmdet - INFO - Epoch [4][1950/2217] lr: 8.000e-03, eta: 10:20:26, time: 2.083, data_time: 0.052, memory: 20207, loss_cls: 0.2786, loss_offset: 0.6731, loss_depth: 0.7709, loss_size: 0.7828, loss_rotsin: 0.2697, loss_centerness: 0.5781, loss_velo: 0.0598, loss_dir: 0.4758, loss_attr: 0.3966, loss: 4.2855, grad_norm: 7.8830
2021-08-16 21:28:59,847 - mmdet - INFO - Epoch [4][2000/2217] lr: 8.000e-03, eta: 10:18:44, time: 2.081, data_time: 0.052, memory: 20207, loss_cls: 0.2792, loss_offset: 0.6768, loss_depth: 0.8411, loss_size: 0.7776, loss_rotsin: 0.2791, loss_centerness: 0.5783, loss_velo: 0.0593, loss_dir: 0.4772, loss_attr: 0.4023, loss: 4.3709, grad_norm: 7.6291
2021-08-16 21:30:43,856 - mmdet - INFO - Epoch [4][2050/2217] lr: 8.000e-03, eta: 10:17:02, time: 2.080, data_time: 0.054, memory: 20207, loss_cls: 0.2837, loss_offset: 0.6716, loss_depth: 0.7907, loss_size: 0.7907, loss_rotsin: 0.2708, loss_centerness: 0.5782, loss_velo: 0.0591, loss_dir: 0.4723, loss_attr: 0.4068, loss: 4.3239, grad_norm: 6.9328
2021-08-16 21:32:28,247 - mmdet - INFO - Epoch [4][2100/2217] lr: 8.000e-03, eta: 10:15:21, time: 2.088, data_time: 0.057, memory: 20207, loss_cls: 0.2786, loss_offset: 0.6711, loss_depth: 0.9077, loss_size: 0.8009, loss_rotsin: 0.2713, loss_centerness: 0.5781, loss_velo: 0.0588, loss_dir: 0.4702, loss_attr: 0.4091, loss: 4.4459, grad_norm: 8.0161
2021-08-16 21:34:12,393 - mmdet - INFO - Epoch [4][2150/2217] lr: 8.000e-03, eta: 10:13:39, time: 2.083, data_time: 0.052, memory: 20207, loss_cls: 0.2806, loss_offset: 0.6715, loss_depth: 0.8380, loss_size: 0.8155, loss_rotsin: 0.2756, loss_centerness: 0.5778, loss_velo: 0.0631, loss_dir: 0.4742, loss_attr: 0.4200, loss: 4.4164, grad_norm: 7.5268
2021-08-16 21:35:56,370 - mmdet - INFO - Epoch [4][2200/2217] lr: 8.000e-03, eta: 10:11:56, time: 2.080, data_time: 0.052, memory: 20207, loss_cls: 0.2761, loss_offset: 0.6635, loss_depth: 0.8082, loss_size: 0.7696, loss_rotsin: 0.2707, loss_centerness: 0.5773, loss_velo: 0.0626, loss_dir: 0.4754, loss_attr: 0.3989, loss: 4.3023, grad_norm: 7.3783
2021-08-16 21:36:32,022 - mmdet - INFO - Saving checkpoint at 4 epochs
2021-08-16 21:38:24,232 - mmdet - INFO - Epoch [5][50/2217] lr: 8.000e-03, eta: 10:08:44, time: 2.224, data_time: 0.198, memory: 20207, loss_cls: 0.2776, loss_offset: 0.6659, loss_depth: 0.7888, loss_size: 0.7727, loss_rotsin: 0.2669, loss_centerness: 0.5781, loss_velo: 0.0588, loss_dir: 0.4592, loss_attr: 0.3764, loss: 4.2445, grad_norm: 7.1560
2021-08-16 21:40:08,540 - mmdet - INFO - Epoch [5][100/2217] lr: 8.000e-03, eta: 10:07:02, time: 2.086, data_time: 0.055, memory: 20207, loss_cls: 0.2740, loss_offset: 0.6585, loss_depth: 0.8197, loss_size: 0.7534, loss_rotsin: 0.2670, loss_centerness: 0.5772, loss_velo: 0.0615, loss_dir: 0.4655, loss_attr: 0.3819, loss: 4.2586, grad_norm: 7.3968
2021-08-16 21:41:52,612 - mmdet - INFO - Epoch [5][150/2217] lr: 8.000e-03, eta: 10:05:21, time: 2.082, data_time: 0.054, memory: 20207, loss_cls: 0.2711, loss_offset: 0.6567, loss_depth: 0.7251, loss_size: 0.7278, loss_rotsin: 0.2612, loss_centerness: 0.5771, loss_velo: 0.0608, loss_dir: 0.4491, loss_attr: 0.3615, loss: 4.0905, grad_norm: 6.4608
2021-08-16 21:43:36,229 - mmdet - INFO - Epoch [5][200/2217] lr: 8.000e-03, eta: 10:03:38, time: 2.072, data_time: 0.054, memory: 20207, loss_cls: 0.2746, loss_offset: 0.6607, loss_depth: 0.7921, loss_size: 0.7382, loss_rotsin: 0.2656, loss_centerness: 0.5781, loss_velo: 0.0596, loss_dir: 0.4628, loss_attr: 0.3836, loss: 4.2152, grad_norm: 8.1780
2021-08-16 21:45:19,966 - mmdet - INFO - Epoch [5][250/2217] lr: 8.000e-03, eta: 10:01:56, time: 2.075, data_time: 0.050, memory: 20207, loss_cls: 0.2762, loss_offset: 0.6669, loss_depth: 0.8050, loss_size: 0.7632, loss_rotsin: 0.2656, loss_centerness: 0.5779, loss_velo: 0.0595, loss_dir: 0.4652, loss_attr: 0.3941, loss: 4.2735, grad_norm: 8.8969
2021-08-16 21:47:03,343 - mmdet - INFO - Epoch [5][300/2217] lr: 8.000e-03, eta: 10:00:13, time: 2.068, data_time: 0.052, memory: 20207, loss_cls: 0.2760, loss_offset: 0.6605, loss_depth: 0.7772, loss_size: 0.7421, loss_rotsin: 0.2619, loss_centerness: 0.5771, loss_velo: 0.0610, loss_dir: 0.4626, loss_attr: 0.3716, loss: 4.1900, grad_norm: 7.1030
2021-08-16 21:48:46,729 - mmdet - INFO - Epoch [5][350/2217] lr: 8.000e-03, eta: 9:58:30, time: 2.068, data_time: 0.052, memory: 20207, loss_cls: 0.2737, loss_offset: 0.6587, loss_depth: 0.7400, loss_size: 0.7564, loss_rotsin: 0.2652, loss_centerness: 0.5775, loss_velo: 0.0609, loss_dir: 0.4638, loss_attr: 0.3734, loss: 4.1697, grad_norm: 6.9848
2021-08-16 21:50:29,895 - mmdet - INFO - Epoch [5][400/2217] lr: 8.000e-03, eta: 9:56:46, time: 2.063, data_time: 0.054, memory: 20207, loss_cls: 0.2779, loss_offset: 0.6674, loss_depth: 0.7707, loss_size: 0.7601, loss_rotsin: 0.2662, loss_centerness: 0.5777, loss_velo: 0.0609, loss_dir: 0.4664, loss_attr: 0.3886, loss: 4.2359, grad_norm: 7.7170
2021-08-16 21:52:13,836 - mmdet - INFO - Epoch [5][450/2217] lr: 8.000e-03, eta: 9:55:04, time: 2.079, data_time: 0.053, memory: 20207, loss_cls: 0.2752, loss_offset: 0.6636, loss_depth: 0.8211, loss_size: 0.7628, loss_rotsin: 0.2651, loss_centerness: 0.5776, loss_velo: 0.0599, loss_dir: 0.4681, loss_attr: 0.3946, loss: 4.2879, grad_norm: 7.7640
2021-08-16 21:53:57,835 - mmdet - INFO - Epoch [5][500/2217] lr: 8.000e-03, eta: 9:53:22, time: 2.080, data_time: 0.054, memory: 20207, loss_cls: 0.2782, loss_offset: 0.6628, loss_depth: 0.7920, loss_size: 0.7706, loss_rotsin: 0.2646, loss_centerness: 0.5775, loss_velo: 0.0586, loss_dir: 0.4644, loss_attr: 0.3854, loss: 4.2543, grad_norm: 7.1602
2021-08-16 21:55:41,842 - mmdet - INFO - Epoch [5][550/2217] lr: 8.000e-03, eta: 9:51:40, time: 2.080, data_time: 0.049, memory: 20207, loss_cls: 0.2741, loss_offset: 0.6592, loss_depth: 0.7974, loss_size: 0.7527, loss_rotsin: 0.2665, loss_centerness: 0.5770, loss_velo: 0.0599, loss_dir: 0.4598, loss_attr: 0.3829, loss: 4.2294, grad_norm: 8.8434
2021-08-16 21:57:25,851 - mmdet - INFO - Epoch [5][600/2217] lr: 8.000e-03, eta: 9:49:58, time: 2.080, data_time: 0.048, memory: 20207, loss_cls: 0.3241, loss_offset: 0.7567, loss_depth: 0.9525, loss_size: 0.9376, loss_rotsin: 0.2976, loss_centerness: 0.5816, loss_velo: 0.0589, loss_dir: 0.5129, loss_attr: 0.5241, loss: 4.9460, grad_norm: 41.0781
2021-08-16 21:59:11,101 - mmdet - INFO - Epoch [5][650/2217] lr: 8.000e-03, eta: 9:48:18, time: 2.105, data_time: 0.052, memory: 20207, loss_cls: 0.3245, loss_offset: 0.7459, loss_depth: 0.9638, loss_size: 0.9528, loss_rotsin: 0.2968, loss_centerness: 0.5810, loss_velo: 0.0575, loss_dir: 0.5189, loss_attr: 0.5309, loss: 4.9722, grad_norm: 10.6685
2021-08-16 22:00:55,941 - mmdet - INFO - Epoch [5][700/2217] lr: 8.000e-03, eta: 9:46:38, time: 2.097, data_time: 0.051, memory: 20207, loss_cls: 0.3019, loss_offset: 0.7083, loss_depth: 0.9892, loss_size: 0.8786, loss_rotsin: 0.2825, loss_centerness: 0.5796, loss_velo: 0.0613, loss_dir: 0.4877, loss_attr: 0.4570, loss: 4.7460, grad_norm: 9.2162
2021-08-16 22:02:40,514 - mmdet - INFO - Epoch [5][750/2217] lr: 8.000e-03, eta: 9:44:57, time: 2.092, data_time: 0.050, memory: 20207, loss_cls: 0.2923, loss_offset: 0.7017, loss_depth: 0.8137, loss_size: 0.8367, loss_rotsin: 0.2768, loss_centerness: 0.5787, loss_velo: 0.0578, loss_dir: 0.4817, loss_attr: 0.4261, loss: 4.4655, grad_norm: 7.2808
2021-08-16 22:04:25,479 - mmdet - INFO - Epoch [5][800/2217] lr: 8.000e-03, eta: 9:43:16, time: 2.099, data_time: 0.049, memory: 20207, loss_cls: 0.2903, loss_offset: 0.6926, loss_depth: 0.8661, loss_size: 0.7944, loss_rotsin: 0.2750, loss_centerness: 0.5788, loss_velo: 0.0562, loss_dir: 0.4821, loss_attr: 0.4109, loss: 4.4465, grad_norm: 7.9141
2021-08-16 22:06:10,007 - mmdet - INFO - Epoch [5][850/2217] lr: 8.000e-03, eta: 9:41:35, time: 2.091, data_time: 0.050, memory: 20207, loss_cls: 0.2843, loss_offset: 0.6813, loss_depth: 0.8482, loss_size: 0.8134, loss_rotsin: 0.2719, loss_centerness: 0.5785, loss_velo: 0.0604, loss_dir: 0.4712, loss_attr: 0.4117, loss: 4.4209, grad_norm: 7.9958
2021-08-16 22:07:54,255 - mmdet - INFO - Epoch [5][900/2217] lr: 8.000e-03, eta: 9:39:53, time: 2.085, data_time: 0.051, memory: 20207, loss_cls: 0.2884, loss_offset: 0.6813, loss_depth: 0.8166, loss_size: 0.8233, loss_rotsin: 0.2773, loss_centerness: 0.5785, loss_velo: 0.0580, loss_dir: 0.4761, loss_attr: 0.4165, loss: 4.4160, grad_norm: 8.1581
2021-08-16 22:09:38,658 - mmdet - INFO - Epoch [5][950/2217] lr: 8.000e-03, eta: 9:38:12, time: 2.088, data_time: 0.053, memory: 20207, loss_cls: 0.2881, loss_offset: 0.6854, loss_depth: 0.8198, loss_size: 0.8138, loss_rotsin: 0.2758, loss_centerness: 0.5788, loss_velo: 0.0611, loss_dir: 0.4766, loss_attr: 0.3997, loss: 4.3991, grad_norm: 8.0372
2021-08-16 22:11:22,777 - mmdet - INFO - Epoch [5][1000/2217] lr: 8.000e-03, eta: 9:36:30, time: 2.082, data_time: 0.050, memory: 20207, loss_cls: 0.2829, loss_offset: 0.6783, loss_depth: 0.8344, loss_size: 0.8131, loss_rotsin: 0.2608, loss_centerness: 0.5778, loss_velo: 0.0592, loss_dir: 0.4667, loss_attr: 0.3924, loss: 4.3657, grad_norm: 8.1471
2021-08-16 22:13:07,666 - mmdet - INFO - Epoch [5][1050/2217] lr: 8.000e-03, eta: 9:34:49, time: 2.098, data_time: 0.053, memory: 20207, loss_cls: 0.2828, loss_offset: 0.6766, loss_depth: 0.8387, loss_size: 0.8009, loss_rotsin: 0.2705, loss_centerness: 0.5781, loss_velo: 0.0599, loss_dir: 0.4683, loss_attr: 0.4126, loss: 4.3884, grad_norm: 7.7495
2021-08-16 22:14:52,093 - mmdet - INFO - Epoch [5][1100/2217] lr: 8.000e-03, eta: 9:33:08, time: 2.089, data_time: 0.050, memory: 20207, loss_cls: 0.2775, loss_offset: 0.6795, loss_depth: 0.7897, loss_size: 0.7648, loss_rotsin: 0.2670, loss_centerness: 0.5786, loss_velo: 0.0587, loss_dir: 0.4674, loss_attr: 0.3999, loss: 4.2832, grad_norm: 6.9521
2021-08-16 22:16:36,782 - mmdet - INFO - Epoch [5][1150/2217] lr: 8.000e-03, eta: 9:31:27, time: 2.094, data_time: 0.050, memory: 20207, loss_cls: 0.2925, loss_offset: 0.6997, loss_depth: 0.8748, loss_size: 0.8369, loss_rotsin: 0.2774, loss_centerness: 0.5789, loss_velo: 0.0616, loss_dir: 0.4905, loss_attr: 0.4155, loss: 4.5278, grad_norm: 12.5717
2021-08-16 22:18:21,930 - mmdet - INFO - Epoch [5][1200/2217] lr: 8.000e-03, eta: 9:29:46, time: 2.103, data_time: 0.051, memory: 20207, loss_cls: 0.2916, loss_offset: 0.6952, loss_depth: 0.8304, loss_size: 0.8325, loss_rotsin: 0.2783, loss_centerness: 0.5789, loss_velo: 0.0587, loss_dir: 0.4840, loss_attr: 0.4260, loss: 4.4755, grad_norm: 7.7902
2021-08-16 22:20:06,884 - mmdet - INFO - Epoch [5][1250/2217] lr: 8.000e-03, eta: 9:28:05, time: 2.099, data_time: 0.053, memory: 20207, loss_cls: 0.2902, loss_offset: 0.6874, loss_depth: 0.8729, loss_size: 0.8195, loss_rotsin: 0.2716, loss_centerness: 0.5789, loss_velo: 0.0595, loss_dir: 0.4789, loss_attr: 0.4141, loss: 4.4729, grad_norm: 8.1725
2021-08-16 22:21:51,182 - mmdet - INFO - Epoch [5][1300/2217] lr: 8.000e-03, eta: 9:26:23, time: 2.086, data_time: 0.049, memory: 20207, loss_cls: 0.2833, loss_offset: 0.6848, loss_depth: 0.9964, loss_size: 0.8092, loss_rotsin: 0.2715, loss_centerness: 0.5781, loss_velo: 0.0587, loss_dir: 0.4705, loss_attr: 0.3974, loss: 4.5501, grad_norm: 9.0655
2021-08-16 22:23:35,559 - mmdet - INFO - Epoch [5][1350/2217] lr: 8.000e-03, eta: 9:24:42, time: 2.088, data_time: 0.053, memory: 20207, loss_cls: 0.2804, loss_offset: 0.6765, loss_depth: 0.8011, loss_size: 0.7731, loss_rotsin: 0.2665, loss_centerness: 0.5779, loss_velo: 0.0578, loss_dir: 0.4636, loss_attr: 0.3909, loss: 4.2879, grad_norm: 7.1365
2021-08-16 22:25:19,427 - mmdet - INFO - Epoch [5][1400/2217] lr: 8.000e-03, eta: 9:22:59, time: 2.077, data_time: 0.052, memory: 20207, loss_cls: 0.2789, loss_offset: 0.6732, loss_depth: 0.8175, loss_size: 0.7776, loss_rotsin: 0.2631, loss_centerness: 0.5775, loss_velo: 0.0586, loss_dir: 0.4584, loss_attr: 0.3887, loss: 4.2935, grad_norm: 7.4789
2021-08-16 22:27:03,609 - mmdet - INFO - Epoch [5][1450/2217] lr: 8.000e-03, eta: 9:21:17, time: 2.084, data_time: 0.052, memory: 20207, loss_cls: 0.2803, loss_offset: 0.6689, loss_depth: 0.7855, loss_size: 0.7593, loss_rotsin: 0.2637, loss_centerness: 0.5777, loss_velo: 0.0583, loss_dir: 0.4583, loss_attr: 0.3812, loss: 4.2333, grad_norm: 7.2766
2021-08-16 22:28:47,522 - mmdet - INFO - Epoch [5][1500/2217] lr: 8.000e-03, eta: 9:19:34, time: 2.078, data_time: 0.052, memory: 20207, loss_cls: 0.2864, loss_offset: 0.6782, loss_depth: 0.7697, loss_size: 0.7886, loss_rotsin: 0.2666, loss_centerness: 0.5781, loss_velo: 0.0571, loss_dir: 0.4640, loss_attr: 0.4191, loss: 4.3077, grad_norm: 10.5162
2021-08-16 22:30:31,445 - mmdet - INFO - Epoch [5][1550/2217] lr: 8.000e-03, eta: 9:17:52, time: 2.079, data_time: 0.053, memory: 20207, loss_cls: 0.2909, loss_offset: 0.6860, loss_depth: 0.9242, loss_size: 0.8380, loss_rotsin: 0.2705, loss_centerness: 0.5785, loss_velo: 0.0607, loss_dir: 0.4673, loss_attr: 0.4172, loss: 4.5334, grad_norm: 8.8141
2021-08-16 22:32:15,999 - mmdet - INFO - Epoch [5][1600/2217] lr: 8.000e-03, eta: 9:16:10, time: 2.091, data_time: 0.052, memory: 20207, loss_cls: 0.2871, loss_offset: 0.6831, loss_depth: 0.8248, loss_size: 0.7987, loss_rotsin: 0.2737, loss_centerness: 0.5784, loss_velo: 0.0603, loss_dir: 0.4697, loss_attr: 0.4121, loss: 4.3878, grad_norm: 7.4105
2021-08-16 22:33:59,996 - mmdet - INFO - Epoch [5][1650/2217] lr: 8.000e-03, eta: 9:14:28, time: 2.080, data_time: 0.052, memory: 20207, loss_cls: 0.2840, loss_offset: 0.6754, loss_depth: 0.8722, loss_size: 0.7961, loss_rotsin: 0.2726, loss_centerness: 0.5780, loss_velo: 0.0558, loss_dir: 0.4655, loss_attr: 0.3879, loss: 4.3876, grad_norm: 8.0796
2021-08-16 22:35:43,265 - mmdet - INFO - Epoch [5][1700/2217] lr: 8.000e-03, eta: 9:12:44, time: 2.065, data_time: 0.054, memory: 20207, loss_cls: 0.2763, loss_offset: 0.6662, loss_depth: 0.7641, loss_size: 0.7727, loss_rotsin: 0.2613, loss_centerness: 0.5777, loss_velo: 0.0583, loss_dir: 0.4604, loss_attr: 0.3839, loss: 4.2209, grad_norm: 6.4235
2021-08-16 22:37:26,778 - mmdet - INFO - Epoch [5][1750/2217] lr: 8.000e-03, eta: 9:11:01, time: 2.070, data_time: 0.053, memory: 20207, loss_cls: 0.2790, loss_offset: 0.6684, loss_depth: 0.7671, loss_size: 0.7791, loss_rotsin: 0.2580, loss_centerness: 0.5775, loss_velo: 0.0564, loss_dir: 0.4619, loss_attr: 0.3889, loss: 4.2364, grad_norm: 6.7292
2021-08-16 22:39:10,046 - mmdet - INFO - Epoch [5][1800/2217] lr: 8.000e-03, eta: 9:09:17, time: 2.065, data_time: 0.051, memory: 20207, loss_cls: 0.2759, loss_offset: 0.6671, loss_depth: 0.7691, loss_size: 0.7471, loss_rotsin: 0.2614, loss_centerness: 0.5779, loss_velo: 0.0588, loss_dir: 0.4473, loss_attr: 0.3864, loss: 4.1910, grad_norm: 6.8399
2021-08-16 22:40:53,907 - mmdet - INFO - Epoch [5][1850/2217] lr: 8.000e-03, eta: 9:07:34, time: 2.077, data_time: 0.054, memory: 20207, loss_cls: 0.2749, loss_offset: 0.6594, loss_depth: 0.8404, loss_size: 0.7614, loss_rotsin: 0.2606, loss_centerness: 0.5776, loss_velo: 0.0569, loss_dir: 0.4550, loss_attr: 0.3645, loss: 4.2505, grad_norm: 7.8251
2021-08-16 22:42:37,703 - mmdet - INFO - Epoch [5][1900/2217] lr: 8.000e-03, eta: 9:05:52, time: 2.076, data_time: 0.055, memory: 20207, loss_cls: 0.2764, loss_offset: 0.6550, loss_depth: 0.7734, loss_size: 0.7472, loss_rotsin: 0.2577, loss_centerness: 0.5772, loss_velo: 0.0601, loss_dir: 0.4625, loss_attr: 0.3817, loss: 4.1914, grad_norm: 6.8388
2021-08-16 22:44:22,019 - mmdet - INFO - Epoch [5][1950/2217] lr: 8.000e-03, eta: 9:04:09, time: 2.086, data_time: 0.051, memory: 20207, loss_cls: 0.2761, loss_offset: 0.6676, loss_depth: 0.8017, loss_size: 0.7475, loss_rotsin: 0.2658, loss_centerness: 0.5775, loss_velo: 0.0579, loss_dir: 0.4616, loss_attr: 0.3778, loss: 4.2335, grad_norm: 7.2482
2021-08-16 22:46:05,997 - mmdet - INFO - Epoch [5][2000/2217] lr: 8.000e-03, eta: 9:02:27, time: 2.080, data_time: 0.049, memory: 20207, loss_cls: 0.2747, loss_offset: 0.6631, loss_depth: 0.9559, loss_size: 0.7629, loss_rotsin: 0.2672, loss_centerness: 0.5774, loss_velo: 0.0556, loss_dir: 0.4554, loss_attr: 0.3597, loss: 4.3718, grad_norm: 9.3790
2021-08-16 22:47:49,598 - mmdet - INFO - Epoch [5][2050/2217] lr: 8.000e-03, eta: 9:00:44, time: 2.072, data_time: 0.052, memory: 20207, loss_cls: 0.2746, loss_offset: 0.6554, loss_depth: 0.8378, loss_size: 0.7670, loss_rotsin: 0.2513, loss_centerness: 0.5774, loss_velo: 0.0588, loss_dir: 0.4512, loss_attr: 0.3806, loss: 4.2542, grad_norm: 7.2690
2021-08-16 22:49:34,033 - mmdet - INFO - Epoch [5][2100/2217] lr: 8.000e-03, eta: 8:59:02, time: 2.089, data_time: 0.056, memory: 20207, loss_cls: 0.2691, loss_offset: 0.6529, loss_depth: 0.7597, loss_size: 0.7446, loss_rotsin: 0.2551, loss_centerness: 0.5769, loss_velo: 0.0564, loss_dir: 0.4569, loss_attr: 0.3784, loss: 4.1499, grad_norm: 6.6326
2021-08-16 22:51:18,479 - mmdet - INFO - Epoch [5][2150/2217] lr: 8.000e-03, eta: 8:57:20, time: 2.089, data_time: 0.054, memory: 20207, loss_cls: 0.2717, loss_offset: 0.6594, loss_depth: 0.7412, loss_size: 0.7309, loss_rotsin: 0.2590, loss_centerness: 0.5770, loss_velo: 0.0556, loss_dir: 0.4577, loss_attr: 0.3679, loss: 4.1206, grad_norm: 6.4519
2021-08-16 22:53:03,409 - mmdet - INFO - Epoch [5][2200/2217] lr: 8.000e-03, eta: 8:55:38, time: 2.099, data_time: 0.050, memory: 20207, loss_cls: 0.2677, loss_offset: 0.6441, loss_depth: 0.8095, loss_size: 0.7421, loss_rotsin: 0.2564, loss_centerness: 0.5766, loss_velo: 0.0546, loss_dir: 0.4490, loss_attr: 0.3522, loss: 4.1521, grad_norm: 7.5933
2021-08-16 22:53:39,640 - mmdet - INFO - Saving checkpoint at 5 epochs
2021-08-16 22:55:31,946 - mmdet - INFO - Epoch [6][50/2217] lr: 8.000e-03, eta: 8:52:42, time: 2.226, data_time: 0.194, memory: 20207, loss_cls: 0.2694, loss_offset: 0.6450, loss_depth: 0.7269, loss_size: 0.7106, loss_rotsin: 0.2513, loss_centerness: 0.5765, loss_velo: 0.0551, loss_dir: 0.4444, loss_attr: 0.3286, loss: 4.0079, grad_norm: 6.5659
2021-08-16 22:57:15,700 - mmdet - INFO - Epoch [6][100/2217] lr: 8.000e-03, eta: 8:50:59, time: 2.075, data_time: 0.055, memory: 20207, loss_cls: 0.2652, loss_offset: 0.6412, loss_depth: 0.7245, loss_size: 0.7377, loss_rotsin: 0.2495, loss_centerness: 0.5762, loss_velo: 0.0573, loss_dir: 0.4356, loss_attr: 0.3394, loss: 4.0268, grad_norm: 7.0328
2021-08-16 22:58:59,738 - mmdet - INFO - Epoch [6][150/2217] lr: 8.000e-03, eta: 8:49:17, time: 2.081, data_time: 0.051, memory: 20207, loss_cls: 0.2686, loss_offset: 0.6549, loss_depth: 0.7568, loss_size: 0.7145, loss_rotsin: 0.2518, loss_centerness: 0.5770, loss_velo: 0.0560, loss_dir: 0.4373, loss_attr: 0.3337, loss: 4.0506, grad_norm: 6.8929
2021-08-16 23:00:43,294 - mmdet - INFO - Epoch [6][200/2217] lr: 8.000e-03, eta: 8:47:34, time: 2.071, data_time: 0.051, memory: 20207, loss_cls: 0.2636, loss_offset: 0.6313, loss_depth: 0.7173, loss_size: 0.6968, loss_rotsin: 0.2443, loss_centerness: 0.5755, loss_velo: 0.0588, loss_dir: 0.4266, loss_attr: 0.3332, loss: 3.9474, grad_norm: 6.6247
2021-08-16 23:02:27,047 - mmdet - INFO - Epoch [6][250/2217] lr: 8.000e-03, eta: 8:45:51, time: 2.075, data_time: 0.053, memory: 20207, loss_cls: 0.2661, loss_offset: 0.6433, loss_depth: 0.8154, loss_size: 0.7231, loss_rotsin: 0.2496, loss_centerness: 0.5763, loss_velo: 0.0544, loss_dir: 0.4388, loss_attr: 0.3359, loss: 4.1028, grad_norm: 7.8448
2021-08-16 23:04:11,044 - mmdet - INFO - Epoch [6][300/2217] lr: 8.000e-03, eta: 8:44:09, time: 2.080, data_time: 0.057, memory: 20207, loss_cls: 0.2661, loss_offset: 0.6423, loss_depth: 0.7316, loss_size: 0.6978, loss_rotsin: 0.2506, loss_centerness: 0.5766, loss_velo: 0.0594, loss_dir: 0.4331, loss_attr: 0.3309, loss: 3.9884, grad_norm: 7.1214
2021-08-16 23:05:54,463 - mmdet - INFO - Epoch [6][350/2217] lr: 8.000e-03, eta: 8:42:26, time: 2.068, data_time: 0.052, memory: 20207, loss_cls: 0.2654, loss_offset: 0.6420, loss_depth: 0.7376, loss_size: 0.7196, loss_rotsin: 0.2602, loss_centerness: 0.5767, loss_velo: 0.0571, loss_dir: 0.4467, loss_attr: 0.3415, loss: 4.0469, grad_norm: 7.2369
2021-08-16 23:07:37,973 - mmdet - INFO - Epoch [6][400/2217] lr: 8.000e-03, eta: 8:40:42, time: 2.070, data_time: 0.050, memory: 20207, loss_cls: 0.2669, loss_offset: 0.6434, loss_depth: 0.8478, loss_size: 0.7198, loss_rotsin: 0.2522, loss_centerness: 0.5766, loss_velo: 0.0553, loss_dir: 0.4375, loss_attr: 0.3454, loss: 4.1449, grad_norm: 7.9521
2021-08-16 23:09:22,241 - mmdet - INFO - Epoch [6][450/2217] lr: 8.000e-03, eta: 8:39:00, time: 2.085, data_time: 0.054, memory: 20207, loss_cls: 0.2655, loss_offset: 0.6426, loss_depth: 0.7943, loss_size: 0.7143, loss_rotsin: 0.2485, loss_centerness: 0.5765, loss_velo: 0.0563, loss_dir: 0.4410, loss_attr: 0.3373, loss: 4.0762, grad_norm: 7.0116
2021-08-16 23:11:06,716 - mmdet - INFO - Epoch [6][500/2217] lr: 8.000e-03, eta: 8:37:19, time: 2.089, data_time: 0.052, memory: 20207, loss_cls: 0.2680, loss_offset: 0.6354, loss_depth: 0.8151, loss_size: 0.7217, loss_rotsin: 0.2489, loss_centerness: 0.5759, loss_velo: 0.0559, loss_dir: 0.4344, loss_attr: 0.3391, loss: 4.0943, grad_norm: 7.8136
2021-08-16 23:12:51,200 - mmdet - INFO - Epoch [6][550/2217] lr: 8.000e-03, eta: 8:35:37, time: 2.090, data_time: 0.053, memory: 20207, loss_cls: 0.2649, loss_offset: 0.6434, loss_depth: 0.8685, loss_size: 0.7195, loss_rotsin: 0.2481, loss_centerness: 0.5766, loss_velo: 0.0552, loss_dir: 0.4378, loss_attr: 0.3449, loss: 4.1589, grad_norm: 8.3738
2021-08-16 23:14:35,321 - mmdet - INFO - Epoch [6][600/2217] lr: 8.000e-03, eta: 8:33:54, time: 2.082, data_time: 0.055, memory: 20207, loss_cls: 0.2618, loss_offset: 0.6293, loss_depth: 0.8641, loss_size: 0.7091, loss_rotsin: 0.2409, loss_centerness: 0.5757, loss_velo: 0.0539, loss_dir: 0.4312, loss_attr: 0.3274, loss: 4.0933, grad_norm: 8.5864
2021-08-16 23:16:19,587 - mmdet - INFO - Epoch [6][650/2217] lr: 8.000e-03, eta: 8:32:12, time: 2.085, data_time: 0.052, memory: 20207, loss_cls: 0.2657, loss_offset: 0.6479, loss_depth: 0.7452, loss_size: 0.6965, loss_rotsin: 0.2511, loss_centerness: 0.5768, loss_velo: 0.0559, loss_dir: 0.4453, loss_attr: 0.3408, loss: 4.0253, grad_norm: 7.1432
2021-08-16 23:18:03,279 - mmdet - INFO - Epoch [6][700/2217] lr: 8.000e-03, eta: 8:30:29, time: 2.074, data_time: 0.053, memory: 20207, loss_cls: 0.2635, loss_offset: 0.6372, loss_depth: 0.9019, loss_size: 0.6964, loss_rotsin: 0.2517, loss_centerness: 0.5764, loss_velo: 0.0554, loss_dir: 0.4319, loss_attr: 0.3226, loss: 4.1368, grad_norm: 9.2041
2021-08-16 23:19:46,918 - mmdet - INFO - Epoch [6][750/2217] lr: 8.000e-03, eta: 8:28:46, time: 2.073, data_time: 0.050, memory: 20207, loss_cls: 0.2654, loss_offset: 0.6427, loss_depth: 0.7914, loss_size: 0.7281, loss_rotsin: 0.2463, loss_centerness: 0.5767, loss_velo: 0.0581, loss_dir: 0.4426, loss_attr: 0.3404, loss: 4.0918, grad_norm: 6.9720
2021-08-16 23:21:30,480 - mmdet - INFO - Epoch [6][800/2217] lr: 8.000e-03, eta: 8:27:03, time: 2.071, data_time: 0.051, memory: 20207, loss_cls: 0.2661, loss_offset: 0.6454, loss_depth: 0.7410, loss_size: 0.7138, loss_rotsin: 0.2490, loss_centerness: 0.5769, loss_velo: 0.0557, loss_dir: 0.4439, loss_attr: 0.3338, loss: 4.0256, grad_norm: 6.9750
2021-08-16 23:23:14,220 - mmdet - INFO - Epoch [6][850/2217] lr: 8.000e-03, eta: 8:25:20, time: 2.075, data_time: 0.054, memory: 20207, loss_cls: 0.2654, loss_offset: 0.6410, loss_depth: 0.7077, loss_size: 0.7243, loss_rotsin: 0.2520, loss_centerness: 0.5768, loss_velo: 0.0567, loss_dir: 0.4440, loss_attr: 0.3400, loss: 4.0081, grad_norm: 6.7315
2021-08-16 23:24:57,524 - mmdet - INFO - Epoch [6][900/2217] lr: 8.000e-03, eta: 8:23:37, time: 2.066, data_time: 0.053, memory: 20207, loss_cls: 0.2680, loss_offset: 0.6442, loss_depth: 0.7053, loss_size: 0.7088, loss_rotsin: 0.2518, loss_centerness: 0.5765, loss_velo: 0.0577, loss_dir: 0.4315, loss_attr: 0.3469, loss: 3.9906, grad_norm: 6.5969
2021-08-16 23:26:40,587 - mmdet - INFO - Epoch [6][950/2217] lr: 8.000e-03, eta: 8:21:53, time: 2.061, data_time: 0.051, memory: 20207, loss_cls: 0.2657, loss_offset: 0.6436, loss_depth: 0.7165, loss_size: 0.6967, loss_rotsin: 0.2525, loss_centerness: 0.5763, loss_velo: 0.0564, loss_dir: 0.4371, loss_attr: 0.3354, loss: 3.9804, grad_norm: 6.9250
2021-08-16 23:28:24,578 - mmdet - INFO - Epoch [6][1000/2217] lr: 8.000e-03, eta: 8:20:11, time: 2.080, data_time: 0.052, memory: 20207, loss_cls: 0.2661, loss_offset: 0.6472, loss_depth: 0.7622, loss_size: 0.7175, loss_rotsin: 0.2478, loss_centerness: 0.5770, loss_velo: 0.0549, loss_dir: 0.4344, loss_attr: 0.3420, loss: 4.0491, grad_norm: 7.6054
2021-08-16 23:30:08,012 - mmdet - INFO - Epoch [6][1050/2217] lr: 8.000e-03, eta: 8:18:27, time: 2.069, data_time: 0.050, memory: 20207, loss_cls: 0.2653, loss_offset: 0.6393, loss_depth: 0.8132, loss_size: 0.7355, loss_rotsin: 0.2511, loss_centerness: 0.5767, loss_velo: 0.0575, loss_dir: 0.4341, loss_attr: 0.3488, loss: 4.1215, grad_norm: 8.1084
2021-08-16 23:31:51,438 - mmdet - INFO - Epoch [6][1100/2217] lr: 8.000e-03, eta: 8:16:44, time: 2.069, data_time: 0.054, memory: 20207, loss_cls: 0.2668, loss_offset: 0.6392, loss_depth: 0.9195, loss_size: 0.6985, loss_rotsin: 0.2484, loss_centerness: 0.5762, loss_velo: 0.0579, loss_dir: 0.4252, loss_attr: 0.3478, loss: 4.1796, grad_norm: 9.9362
2021-08-16 23:33:34,907 - mmdet - INFO - Epoch [6][1150/2217] lr: 8.000e-03, eta: 8:15:01, time: 2.069, data_time: 0.050, memory: 20207, loss_cls: 0.2612, loss_offset: 0.6350, loss_depth: 0.7143, loss_size: 0.6815, loss_rotsin: 0.2512, loss_centerness: 0.5763, loss_velo: 0.0552, loss_dir: 0.4381, loss_attr: 0.3306, loss: 3.9434, grad_norm: 6.6455
2021-08-16 23:35:18,106 - mmdet - INFO - Epoch [6][1200/2217] lr: 8.000e-03, eta: 8:13:17, time: 2.064, data_time: 0.049, memory: 20207, loss_cls: 0.2640, loss_offset: 0.6326, loss_depth: 0.7183, loss_size: 0.6975, loss_rotsin: 0.2443, loss_centerness: 0.5759, loss_velo: 0.0565, loss_dir: 0.4377, loss_attr: 0.3373, loss: 3.9641, grad_norm: 7.3544
2021-08-16 23:37:01,554 - mmdet - INFO - Epoch [6][1250/2217] lr: 8.000e-03, eta: 8:11:34, time: 2.069, data_time: 0.051, memory: 20207, loss_cls: 0.2613, loss_offset: 0.6320, loss_depth: 0.7373, loss_size: 0.6965, loss_rotsin: 0.2475, loss_centerness: 0.5761, loss_velo: 0.0552, loss_dir: 0.4370, loss_attr: 0.3210, loss: 3.9638, grad_norm: 7.4064
2021-08-16 23:38:45,466 - mmdet - INFO - Epoch [6][1300/2217] lr: 8.000e-03, eta: 8:09:51, time: 2.078, data_time: 0.050, memory: 20207, loss_cls: 0.2664, loss_offset: 0.6361, loss_depth: 0.7012, loss_size: 0.7283, loss_rotsin: 0.2445, loss_centerness: 0.5760, loss_velo: 0.0542, loss_dir: 0.4328, loss_attr: 0.3387, loss: 3.9781, grad_norm: 7.4806
2021-08-16 23:40:29,506 - mmdet - INFO - Epoch [6][1350/2217] lr: 8.000e-03, eta: 8:08:09, time: 2.081, data_time: 0.051, memory: 20207, loss_cls: 0.2706, loss_offset: 0.6527, loss_depth: 0.7944, loss_size: 0.7401, loss_rotsin: 0.2510, loss_centerness: 0.5770, loss_velo: 0.0565, loss_dir: 0.4397, loss_attr: 0.3492, loss: 4.1313, grad_norm: 9.5493
2021-08-16 23:42:13,542 - mmdet - INFO - Epoch [6][1400/2217] lr: 8.000e-03, eta: 8:06:26, time: 2.081, data_time: 0.051, memory: 20207, loss_cls: 0.2815, loss_offset: 0.6703, loss_depth: 0.7952, loss_size: 0.7680, loss_rotsin: 0.2539, loss_centerness: 0.5776, loss_velo: 0.0596, loss_dir: 0.4442, loss_attr: 0.3805, loss: 4.2310, grad_norm: 9.8253
2021-08-16 23:43:57,301 - mmdet - INFO - Epoch [6][1450/2217] lr: 8.000e-03, eta: 8:04:43, time: 2.075, data_time: 0.054, memory: 20207, loss_cls: 0.2728, loss_offset: 0.6538, loss_depth: 0.7953, loss_size: 0.7563, loss_rotsin: 0.2544, loss_centerness: 0.5776, loss_velo: 0.0574, loss_dir: 0.4434, loss_attr: 0.3598, loss: 4.1707, grad_norm: 8.3359
2021-08-16 23:45:41,360 - mmdet - INFO - Epoch [6][1500/2217] lr: 8.000e-03, eta: 8:03:01, time: 2.081, data_time: 0.049, memory: 20207, loss_cls: 0.2733, loss_offset: 0.6657, loss_depth: 0.8588, loss_size: 0.7385, loss_rotsin: 0.2585, loss_centerness: 0.5776, loss_velo: 0.0570, loss_dir: 0.4488, loss_attr: 0.3458, loss: 4.2241, grad_norm: 9.7562
2021-08-16 23:47:25,615 - mmdet - INFO - Epoch [6][1550/2217] lr: 8.000e-03, eta: 8:01:18, time: 2.085, data_time: 0.052, memory: 20207, loss_cls: 0.2787, loss_offset: 0.6686, loss_depth: 0.7802, loss_size: 0.7615, loss_rotsin: 0.2529, loss_centerness: 0.5776, loss_velo: 0.0573, loss_dir: 0.4499, loss_attr: 0.3807, loss: 4.2072, grad_norm: 8.3237
2021-08-16 23:49:09,293 - mmdet - INFO - Epoch [6][1600/2217] lr: 8.000e-03, eta: 7:59:35, time: 2.074, data_time: 0.050, memory: 20207, loss_cls: 0.2749, loss_offset: 0.6602, loss_depth: 0.8181, loss_size: 0.7689, loss_rotsin: 0.2531, loss_centerness: 0.5773, loss_velo: 0.0564, loss_dir: 0.4410, loss_attr: 0.3527, loss: 4.2026, grad_norm: 8.7601
2021-08-16 23:50:53,231 - mmdet - INFO - Epoch [6][1650/2217] lr: 8.000e-03, eta: 7:57:53, time: 2.079, data_time: 0.054, memory: 20207, loss_cls: 0.2732, loss_offset: 0.6519, loss_depth: 0.7695, loss_size: 0.7439, loss_rotsin: 0.2450, loss_centerness: 0.5766, loss_velo: 0.0579, loss_dir: 0.4466, loss_attr: 0.3655, loss: 4.1300, grad_norm: 7.6165
2021-08-16 23:52:37,291 - mmdet - INFO - Epoch [6][1700/2217] lr: 8.000e-03, eta: 7:56:10, time: 2.081, data_time: 0.054, memory: 20207, loss_cls: 0.2703, loss_offset: 0.6542, loss_depth: 0.7389, loss_size: 0.7214, loss_rotsin: 0.2511, loss_centerness: 0.5769, loss_velo: 0.0559, loss_dir: 0.4387, loss_attr: 0.3645, loss: 4.0719, grad_norm: 7.5739
2021-08-16 23:54:21,440 - mmdet - INFO - Epoch [6][1750/2217] lr: 8.000e-03, eta: 7:54:27, time: 2.083, data_time: 0.051, memory: 20207, loss_cls: 0.2695, loss_offset: 0.6531, loss_depth: 0.7252, loss_size: 0.7452, loss_rotsin: 0.2516, loss_centerness: 0.5769, loss_velo: 0.0577, loss_dir: 0.4444, loss_attr: 0.3540, loss: 4.0775, grad_norm: 7.5435
2021-08-16 23:56:06,132 - mmdet - INFO - Epoch [6][1800/2217] lr: 8.000e-03, eta: 7:52:45, time: 2.094, data_time: 0.050, memory: 20207, loss_cls: 0.2651, loss_offset: 0.6436, loss_depth: 0.9177, loss_size: 0.7136, loss_rotsin: 0.2491, loss_centerness: 0.5764, loss_velo: 0.0550, loss_dir: 0.4404, loss_attr: 0.3360, loss: 4.1969, grad_norm: 9.2840
2021-08-16 23:57:50,308 - mmdet - INFO - Epoch [6][1850/2217] lr: 8.000e-03, eta: 7:51:03, time: 2.084, data_time: 0.051, memory: 20207, loss_cls: 0.2716, loss_offset: 0.6530, loss_depth: 0.8074, loss_size: 0.7419, loss_rotsin: 0.2484, loss_centerness: 0.5768, loss_velo: 0.0548, loss_dir: 0.4372, loss_attr: 0.3352, loss: 4.1264, grad_norm: 8.2715
2021-08-16 23:59:34,128 - mmdet - INFO - Epoch [6][1900/2217] lr: 8.000e-03, eta: 7:49:20, time: 2.076, data_time: 0.051, memory: 20207, loss_cls: 0.2665, loss_offset: 0.6442, loss_depth: 0.7928, loss_size: 0.7002, loss_rotsin: 0.2476, loss_centerness: 0.5762, loss_velo: 0.0547, loss_dir: 0.4393, loss_attr: 0.3294, loss: 4.0508, grad_norm: 7.8353
2021-08-17 00:01:18,405 - mmdet - INFO - Epoch [6][1950/2217] lr: 8.000e-03, eta: 7:47:38, time: 2.085, data_time: 0.053, memory: 20207, loss_cls: 0.2663, loss_offset: 0.6369, loss_depth: 0.7246, loss_size: 0.7165, loss_rotsin: 0.2536, loss_centerness: 0.5766, loss_velo: 0.0585, loss_dir: 0.4334, loss_attr: 0.3496, loss: 4.0160, grad_norm: 6.7916
2021-08-17 00:03:02,289 - mmdet - INFO - Epoch [6][2000/2217] lr: 8.000e-03, eta: 7:45:55, time: 2.078, data_time: 0.049, memory: 20207, loss_cls: 0.2674, loss_offset: 0.6479, loss_depth: 0.7784, loss_size: 0.7240, loss_rotsin: 0.2496, loss_centerness: 0.5768, loss_velo: 0.0560, loss_dir: 0.4427, loss_attr: 0.3452, loss: 4.0880, grad_norm: 7.7939
2021-08-17 00:04:46,144 - mmdet - INFO - Epoch [6][2050/2217] lr: 8.000e-03, eta: 7:44:12, time: 2.077, data_time: 0.050, memory: 20207, loss_cls: 0.2663, loss_offset: 0.6366, loss_depth: 0.8019, loss_size: 0.7170, loss_rotsin: 0.2453, loss_centerness: 0.5760, loss_velo: 0.0568, loss_dir: 0.4301, loss_attr: 0.3383, loss: 4.0683, grad_norm: 8.0873
2021-08-17 00:06:30,524 - mmdet - INFO - Epoch [6][2100/2217] lr: 8.000e-03, eta: 7:42:29, time: 2.088, data_time: 0.052, memory: 20207, loss_cls: 0.2651, loss_offset: 0.6379, loss_depth: 0.7475, loss_size: 0.7122, loss_rotsin: 0.2452, loss_centerness: 0.5762, loss_velo: 0.0569, loss_dir: 0.4275, loss_attr: 0.3352, loss: 4.0038, grad_norm: 7.5551
2021-08-17 00:08:15,170 - mmdet - INFO - Epoch [6][2150/2217] lr: 8.000e-03, eta: 7:40:47, time: 2.093, data_time: 0.050, memory: 20207, loss_cls: 0.2620, loss_offset: 0.6348, loss_depth: 0.7992, loss_size: 0.7176, loss_rotsin: 0.2423, loss_centerness: 0.5763, loss_velo: 0.0566, loss_dir: 0.4303, loss_attr: 0.3282, loss: 4.0473, grad_norm: 7.9021
2021-08-17 00:09:59,764 - mmdet - INFO - Epoch [6][2200/2217] lr: 8.000e-03, eta: 7:39:05, time: 2.092, data_time: 0.051, memory: 20207, loss_cls: 0.2642, loss_offset: 0.6318, loss_depth: 0.7286, loss_size: 0.7019, loss_rotsin: 0.2417, loss_centerness: 0.5758, loss_velo: 0.0534, loss_dir: 0.4251, loss_attr: 0.3248, loss: 3.9473, grad_norm: 6.9175
2021-08-17 00:10:35,602 - mmdet - INFO - Saving checkpoint at 6 epochs
2021-08-17 00:12:28,296 - mmdet - INFO - Epoch [7][50/2217] lr: 8.000e-03, eta: 7:36:20, time: 2.232, data_time: 0.206, memory: 20207, loss_cls: 0.2593, loss_offset: 0.6363, loss_depth: 0.7378, loss_size: 0.6742, loss_rotsin: 0.2386, loss_centerness: 0.5760, loss_velo: 0.0534, loss_dir: 0.4263, loss_attr: 0.3018, loss: 3.9037, grad_norm: 7.6603
2021-08-17 00:14:12,124 - mmdet - INFO - Epoch [7][100/2217] lr: 8.000e-03, eta: 7:34:37, time: 2.077, data_time: 0.054, memory: 20207, loss_cls: 0.2561, loss_offset: 0.6299, loss_depth: 0.7265, loss_size: 0.6769, loss_rotsin: 0.2362, loss_centerness: 0.5762, loss_velo: 0.0538, loss_dir: 0.4174, loss_attr: 0.2986, loss: 3.8715, grad_norm: 7.5633
2021-08-17 00:15:55,959 - mmdet - INFO - Epoch [7][150/2217] lr: 8.000e-03, eta: 7:32:54, time: 2.077, data_time: 0.054, memory: 20207, loss_cls: 0.2604, loss_offset: 0.6269, loss_depth: 0.6863, loss_size: 0.6813, loss_rotsin: 0.2381, loss_centerness: 0.5757, loss_velo: 0.0570, loss_dir: 0.4195, loss_attr: 0.3231, loss: 3.8684, grad_norm: 6.8550
2021-08-17 00:17:39,894 - mmdet - INFO - Epoch [7][200/2217] lr: 8.000e-03, eta: 7:31:11, time: 2.079, data_time: 0.051, memory: 20207, loss_cls: 0.2554, loss_offset: 0.6229, loss_depth: 0.8650, loss_size: 0.6581, loss_rotsin: 0.2399, loss_centerness: 0.5755, loss_velo: 0.0537, loss_dir: 0.4181, loss_attr: 0.2835, loss: 3.9722, grad_norm: 8.7892
2021-08-17 00:19:24,615 - mmdet - INFO - Epoch [7][250/2217] lr: 8.000e-03, eta: 7:29:29, time: 2.094, data_time: 0.053, memory: 20207, loss_cls: 0.2550, loss_offset: 0.6196, loss_depth: 0.7750, loss_size: 0.6589, loss_rotsin: 0.2348, loss_centerness: 0.5752, loss_velo: 0.0578, loss_dir: 0.4162, loss_attr: 0.3039, loss: 3.8964, grad_norm: 8.0507
2021-08-17 00:21:08,790 - mmdet - INFO - Epoch [7][300/2217] lr: 8.000e-03, eta: 7:27:47, time: 2.083, data_time: 0.052, memory: 20207, loss_cls: 0.2595, loss_offset: 0.6253, loss_depth: 0.7250, loss_size: 0.6764, loss_rotsin: 0.2375, loss_centerness: 0.5757, loss_velo: 0.0533, loss_dir: 0.4330, loss_attr: 0.3050, loss: 3.8908, grad_norm: 7.0812
2021-08-17 00:22:52,856 - mmdet - INFO - Epoch [7][350/2217] lr: 8.000e-03, eta: 7:26:04, time: 2.081, data_time: 0.056, memory: 20207, loss_cls: 0.2554, loss_offset: 0.6229, loss_depth: 0.6711, loss_size: 0.6733, loss_rotsin: 0.2404, loss_centerness: 0.5755, loss_velo: 0.0552, loss_dir: 0.4181, loss_attr: 0.2778, loss: 3.7898, grad_norm: 6.7679
2021-08-17 00:24:36,142 - mmdet - INFO - Epoch [7][400/2217] lr: 8.000e-03, eta: 7:24:21, time: 2.066, data_time: 0.049, memory: 20207, loss_cls: 0.2540, loss_offset: 0.6248, loss_depth: 0.6976, loss_size: 0.6420, loss_rotsin: 0.2379, loss_centerness: 0.5758, loss_velo: 0.0579, loss_dir: 0.4153, loss_attr: 0.2934, loss: 3.7988, grad_norm: 7.2480
2021-08-17 00:26:19,706 - mmdet - INFO - Epoch [7][450/2217] lr: 8.000e-03, eta: 7:22:38, time: 2.071, data_time: 0.052, memory: 20207, loss_cls: 0.2557, loss_offset: 0.6210, loss_depth: 0.8129, loss_size: 0.6797, loss_rotsin: 0.2433, loss_centerness: 0.5756, loss_velo: 0.0550, loss_dir: 0.4086, loss_attr: 0.2964, loss: 3.9481, grad_norm: 7.9149
2021-08-17 00:28:03,314 - mmdet - INFO - Epoch [7][500/2217] lr: 8.000e-03, eta: 7:20:55, time: 2.072, data_time: 0.052, memory: 20207, loss_cls: 0.2550, loss_offset: 0.6202, loss_depth: 0.7211, loss_size: 0.6800, loss_rotsin: 0.2345, loss_centerness: 0.5753, loss_velo: 0.0562, loss_dir: 0.4039, loss_attr: 0.2975, loss: 3.8437, grad_norm: 7.0395
2021-08-17 00:29:47,113 - mmdet - INFO - Epoch [7][550/2217] lr: 8.000e-03, eta: 7:19:12, time: 2.076, data_time: 0.050, memory: 20207, loss_cls: 0.2582, loss_offset: 0.6219, loss_depth: 0.7313, loss_size: 0.6672, loss_rotsin: 0.2357, loss_centerness: 0.5755, loss_velo: 0.0570, loss_dir: 0.4177, loss_attr: 0.2985, loss: 3.8631, grad_norm: 7.6116
2021-08-17 00:31:31,105 - mmdet - INFO - Epoch [7][600/2217] lr: 8.000e-03, eta: 7:17:29, time: 2.080, data_time: 0.049, memory: 20207, loss_cls: 0.2573, loss_offset: 0.6183, loss_depth: 0.7807, loss_size: 0.6674, loss_rotsin: 0.2429, loss_centerness: 0.5749, loss_velo: 0.0551, loss_dir: 0.4170, loss_attr: 0.3054, loss: 3.9189, grad_norm: 7.8748
2021-08-17 00:33:15,141 - mmdet - INFO - Epoch [7][650/2217] lr: 8.000e-03, eta: 7:15:47, time: 2.081, data_time: 0.050, memory: 20207, loss_cls: 0.2567, loss_offset: 0.6213, loss_depth: 0.6860, loss_size: 0.6494, loss_rotsin: 0.2371, loss_centerness: 0.5753, loss_velo: 0.0541, loss_dir: 0.4158, loss_attr: 0.3158, loss: 3.8113, grad_norm: 6.7359
2021-08-17 00:34:58,918 - mmdet - INFO - Epoch [7][700/2217] lr: 8.000e-03, eta: 7:14:04, time: 2.075, data_time: 0.051, memory: 20207, loss_cls: 0.2573, loss_offset: 0.6246, loss_depth: 0.7785, loss_size: 0.6792, loss_rotsin: 0.2377, loss_centerness: 0.5755, loss_velo: 0.0583, loss_dir: 0.4107, loss_attr: 0.3107, loss: 3.9324, grad_norm: 8.3147
2021-08-17 00:36:42,769 - mmdet - INFO - Epoch [7][750/2217] lr: 8.000e-03, eta: 7:12:21, time: 2.077, data_time: 0.050, memory: 20207, loss_cls: 0.2574, loss_offset: 0.6188, loss_depth: 0.7015, loss_size: 0.6644, loss_rotsin: 0.2366, loss_centerness: 0.5749, loss_velo: 0.0550, loss_dir: 0.4126, loss_attr: 0.2906, loss: 3.8117, grad_norm: 7.3662
2021-08-17 00:38:26,629 - mmdet - INFO - Epoch [7][800/2217] lr: 8.000e-03, eta: 7:10:38, time: 2.077, data_time: 0.051, memory: 20207, loss_cls: 0.2577, loss_offset: 0.6220, loss_depth: 0.6731, loss_size: 0.6771, loss_rotsin: 0.2336, loss_centerness: 0.5759, loss_velo: 0.0537, loss_dir: 0.4091, loss_attr: 0.2984, loss: 3.8006, grad_norm: 6.6097
2021-08-17 00:40:10,527 - mmdet - INFO - Epoch [7][850/2217] lr: 8.000e-03, eta: 7:08:55, time: 2.078, data_time: 0.056, memory: 20207, loss_cls: 0.2527, loss_offset: 0.6151, loss_depth: 0.6912, loss_size: 0.6458, loss_rotsin: 0.2323, loss_centerness: 0.5752, loss_velo: 0.0541, loss_dir: 0.4046, loss_attr: 0.2955, loss: 3.7663, grad_norm: 7.2807
2021-08-17 00:41:54,775 - mmdet - INFO - Epoch [7][900/2217] lr: 8.000e-03, eta: 7:07:12, time: 2.085, data_time: 0.053, memory: 20207, loss_cls: 0.2532, loss_offset: 0.6124, loss_depth: 0.6863, loss_size: 0.6441, loss_rotsin: 0.2300, loss_centerness: 0.5752, loss_velo: 0.0536, loss_dir: 0.4104, loss_attr: 0.2963, loss: 3.7616, grad_norm: 6.9854
2021-08-17 00:43:38,652 - mmdet - INFO - Epoch [7][950/2217] lr: 8.000e-03, eta: 7:05:30, time: 2.077, data_time: 0.052, memory: 20207, loss_cls: 0.2549, loss_offset: 0.6202, loss_depth: 0.7071, loss_size: 0.6450, loss_rotsin: 0.2353, loss_centerness: 0.5754, loss_velo: 0.0561, loss_dir: 0.4143, loss_attr: 0.2991, loss: 3.8076, grad_norm: 7.2255