-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
353 lines (280 loc) · 13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
@Date: 2021/07/17
@description:
"""
from cmath import nan
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import sys
import shutil
import argparse
import numpy as np
import json
import torch
import torch.nn.parallel
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torch.cuda
from PIL import Image
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from config.defaults import get_config, get_rank_config
from models.other.criterion import calc_criterion
from models.build import build_model
from models.other.init_env import init_env
from utils.logger import build_logger
from utils.misc import tensor2np_d, tensor2np
from dataset.build import build_loader
from evaluation.accuracy import calc_accuracy, show_heat_map, calc_ce, calc_pe, calc_rmse_delta_1, \
show_depth_normal_grad, calc_f1_score
from postprocessing.post_process import post_process
try:
from apex import amp
except ImportError:
amp = None
def parse_option():
debug = True if sys.gettrace() else False
parser = argparse.ArgumentParser(description='Panorama Layout Transformer training and evaluation script')
parser.add_argument('--cfg',
type=str,
metavar='FILE',
help='path to config file')
parser.add_argument('--mode',
type=str,
default='train',
choices=['train', 'val', 'test'],
help='train/val/test mode')
parser.add_argument('--val_name',
type=str,
choices=['val', 'test'],
help='val name')
parser.add_argument('--bs', type=int,
help='batch size')
parser.add_argument('--save_eval', action='store_true',
help='save eval result')
parser.add_argument('--post_processing', type=str,
choices=['manhattan', 'atalanta', 'manhattan_old'],
help='type of postprocessing ')
parser.add_argument('--need_cpe', action='store_true',
help='need to evaluate corner error and pixel error')
parser.add_argument('--need_f1', action='store_true',
help='need to evaluate f1-score of corners')
parser.add_argument('--force_cube', action='store_true',
help='force cube shape when eval')
parser.add_argument('--need_rmse', action='store_true',
help='need to evaluate root mean squared error and delta error')
parser.add_argument('--wall_num', type=int,
help='wall number')
args = parser.parse_args()
args.debug = debug
print("arguments:")
for arg in vars(args):
print(arg, ":", getattr(args, arg))
print("-" * 50)
return args
def main():
args = parse_option()
config = get_config(args)
os.makedirs(config.CKPT.DIR, exist_ok=True)
os.makedirs(config.CKPT.RESULT_DIR, exist_ok=True)
os.makedirs(config.LOGGER.DIR, exist_ok=True)
if config.MODE == 'train':
with open(os.path.join(config.CKPT.DIR, "config.yaml"), "w") as f:
f.write(config.dump(allow_unicode=True))
print(f"Use single process, device:{config.TRAIN.DEVICE}")
main_worker(0, config, 1)
def main_worker(local_rank, cfg, world_size):
config = get_rank_config(cfg, local_rank, world_size)
logger = build_logger(config)
writer = SummaryWriter(config.CKPT.DIR)
logger.info(f"Comment: {config.COMMENT}")
cur_pid = os.getpid()
logger.info(f"Current process id: {cur_pid}")
init_env(config.SEED, config.TRAIN.DETERMINISTIC, config.DATA.NUM_WORKERS)
model, optimizer, criterion, scheduler = build_model(config, logger)
train_data_loader, val_data_loader = build_loader(config, logger)
if 'cuda' in config.TRAIN.DEVICE:
torch.cuda.set_device(config.TRAIN.DEVICE)
if config.MODE == 'train':
train(model, train_data_loader, val_data_loader, optimizer, criterion, config, logger, writer, scheduler)
else:
iou_results, other_results = val_an_epoch(model, val_data_loader,
criterion, config, logger, writer=None,
epoch=config.TRAIN.START_EPOCH)
results = dict(iou_results, **other_results)
if config.SAVE_EVAL:
save_path = os.path.join(config.CKPT.RESULT_DIR, f"result.json")
with open(save_path, 'w+') as f:
json.dump(results, f, indent=4)
def save(model, optimizer, epoch, iou_d, logger, writer, config):
model.save(optimizer, epoch, accuracy=iou_d['full_3d'], logger=logger, acc_d=iou_d, config=config)
for k in model.acc_d:
writer.add_scalar(f"BestACC/{k}", model.acc_d[k]['acc'], epoch)
def train(model, train_data_loader, val_data_loader, optimizer, criterion, config, logger, writer, scheduler):
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
logger.info("=" * 100)
train_an_epoch(model, train_data_loader, optimizer, criterion, config, logger, writer, epoch)
epoch_iou_d, _ = val_an_epoch(model, val_data_loader, criterion, config, logger, writer, epoch)
save(model, optimizer, epoch, epoch_iou_d, logger, writer, config)
if scheduler is not None:
if scheduler.min_lr is not None and optimizer.param_groups[0]['lr'] <= scheduler.min_lr:
continue
scheduler.step()
writer.close()
def train_an_epoch(model, train_data_loader, optimizer, criterion, config, logger, writer, epoch=0):
logger.info(f'Start Train Epoch {epoch}/{config.TRAIN.EPOCHS - 1}')
model.train()
optimizer.zero_grad()
data_len = len(train_data_loader)
start_i = data_len * epoch * config.WORLD_SIZE
bar = enumerate(train_data_loader)
bar = tqdm(bar, total=data_len, ncols=200)
device = config.TRAIN.DEVICE
epoch_loss_d = {}
for i, gt in bar:
imgs = gt['image'].to(device, non_blocking=True)
gt['depth'] = gt['depth'].to(device, non_blocking=True)
gt['ratio'] = gt['ratio'].to(device, non_blocking=True)
gt['segmentation'] = gt['segmentation'].to(device, non_blocking=True)
dt = model(imgs)
loss, batch_loss_d, epoch_loss_d = calc_criterion(criterion, gt, dt, epoch_loss_d)
bar.set_postfix(batch_loss_d)
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step = start_i + i * config.WORLD_SIZE + config.LOCAL_RANK
for key, val in batch_loss_d.items():
writer.add_scalar(f'TrainBatchLoss/{key}', val, global_step)
epoch_loss_d = dict(zip(epoch_loss_d.keys(), [np.array(epoch_loss_d[k]).mean() for k in epoch_loss_d.keys()]))
s = 'TrainEpochLoss: '
for key, val in epoch_loss_d.items():
writer.add_scalar(f'TrainEpochLoss/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
writer.add_scalar('LearningRate', optimizer.param_groups[0]['lr'], epoch)
logger.info(f"LearningRate: {optimizer.param_groups[0]['lr']}")
@torch.no_grad()
def val_an_epoch(model, val_data_loader, criterion, config, logger, writer, epoch=0):
model.eval()
logger.info(f'Start Validate Epoch {epoch}/{config.TRAIN.EPOCHS - 1}')
data_len = len(val_data_loader)
start_i = data_len * epoch * config.WORLD_SIZE
bar = enumerate(val_data_loader)
bar = tqdm(bar, total=data_len, ncols=200)
device = config.TRAIN.DEVICE
epoch_loss_d = {}
epoch_iou_d = {
'visible_2d': [],
'visible_3d': [],
'full_2d': [],
'full_3d': [],
'height': []
}
epoch_other_d = {
'ce': [],
'pe': [],
'f1': [],
'precision': [],
'recall': [],
'rmse': [],
'delta_1': []
}
for i, gt in bar:
imgs = gt['image'].to(device, non_blocking=True)
gt['ratio'] = gt['ratio'].to(device, non_blocking=True)
gt['depth'] = gt['depth'].to(device, non_blocking=True)
gt['segmentation'] = gt['segmentation'].to(device, non_blocking=True)
dt = model(imgs)
vis_w = config.TRAIN.VIS_WEIGHT # 1024
visualization = True
loss, batch_loss_d, epoch_loss_d = calc_criterion(criterion, gt, dt, epoch_loss_d)
if config.EVAL.POST_PROCESSING is not None:
depth = tensor2np(dt['depth'])
dt['processed_xyz'] = post_process(depth, type_name=config.EVAL.POST_PROCESSING,
need_cube=config.EVAL.FORCE_CUBE)
if config.EVAL.FORCE_CUBE and config.EVAL.NEED_CPE:
ce = calc_ce(tensor2np_d(dt), tensor2np_d(gt))
pe = calc_pe(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['ce'].append(ce)
epoch_other_d['pe'].append(pe)
if config.EVAL.NEED_F1:
f1, precision, recall = calc_f1_score(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['f1'].append(f1)
epoch_other_d['precision'].append(precision)
epoch_other_d['recall'].append(recall)
if config.EVAL.NEED_RMSE:
rmse, delta_1 = calc_rmse_delta_1(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['rmse'].append(rmse)
epoch_other_d['delta_1'].append(delta_1)
visb_iou, full_iou, iou_height, pano_bds, full_iou_2ds = calc_accuracy(tensor2np_d(dt), tensor2np_d(gt),
visualization, h=vis_w // 2)
epoch_iou_d['visible_2d'].append(visb_iou[0])
epoch_iou_d['visible_3d'].append(visb_iou[1])
epoch_iou_d['full_2d'].append(full_iou[0])
epoch_iou_d['full_3d'].append(full_iou[1])
epoch_iou_d['height'].append(iou_height)
bar.set_postfix(batch_loss_d)
global_step = start_i + i * config.WORLD_SIZE + config.LOCAL_RANK
if writer:
for key, val in batch_loss_d.items():
writer.add_scalar(f'ValBatchLoss/{key}', val, global_step)
if not visualization:
continue
gt_grad_imgs, dt_grad_imgs = show_depth_normal_grad(dt, gt, device, vis_w)
dt_heat_map_imgs = None
gt_heat_map_imgs = None
if config.TRAIN.VIS_MERGE or config.SAVE_EVAL:
imgs = []
for j in range(len(pano_bds)):
# floorplan = np.concatenate([visb_iou[2][j], full_iou[2][j]], axis=-1)
floorplan = full_iou[2][j]
margin_w = int(floorplan.shape[-1] * (60/512))
floorplan = floorplan[:, :, margin_w:-margin_w]
floorplan = np.concatenate([floorplan, floorplan[:, 452:, :]], axis=-2)
grad_h = dt_grad_imgs[0].shape[1]
vis_merge = [
pano_bds[j][:, :],
dt_grad_imgs[j]
]
if 'corner_heat_map' in gt:
vis_merge = [dt_heat_map_imgs[j], gt_heat_map_imgs[j]] + vis_merge
img = np.concatenate(vis_merge, axis=-2)
img = np.concatenate([img, floorplan], axis=-1)
# img = gt_grad_imgs[j]
imgs.append(img)
if writer:
writer.add_images('VIS/Merge', np.array(imgs), global_step)
if config.SAVE_EVAL:
for k in range(len(imgs)):
img = imgs[k] * 255.0
save_path = os.path.join(config.CKPT.RESULT_DIR, f"{gt['id'][k]}_{full_iou_2ds[k]:.5f}.png")
Image.fromarray(img.transpose(1, 2, 0).astype(np.uint8)).save(save_path)
elif writer:
writer.add_images('IoU/Visible_Floorplan', visb_iou[2], global_step)
writer.add_images('IoU/Full_Floorplan', full_iou[2], global_step)
writer.add_images('IoU/Boundary', pano_bds, global_step)
writer.add_images('Grad/gt', gt_grad_imgs, global_step)
writer.add_images('Grad/dt', dt_grad_imgs, global_step)
epoch_loss_d = dict(zip(epoch_loss_d.keys(), [np.array(epoch_loss_d[k]).mean() for k in epoch_loss_d.keys()]))
s = 'ValEpochLoss: '
for key, val in epoch_loss_d.items():
if writer:
writer.add_scalar(f'ValEpochLoss/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
epoch_iou_d = dict(zip(epoch_iou_d.keys(), [np.array(epoch_iou_d[k]).mean() for k in epoch_iou_d.keys()]))
s = 'ValEpochIoU: '
for key, val in epoch_iou_d.items():
if writer:
writer.add_scalar(f'ValEpochIoU/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
epoch_other_d = dict(zip(epoch_other_d.keys(),
[np.array(epoch_other_d[k]).mean() if len(epoch_other_d[k]) > 0 else 0 for k in
epoch_other_d.keys()]))
logger.info(f'other acc: {epoch_other_d}')
return epoch_iou_d, epoch_other_d
if __name__ == '__main__':
main()