From cddb054b9e7d53d1cd2bb900180ddc5c501d25a2 Mon Sep 17 00:00:00 2001 From: Connor Goggins Date: Thu, 13 Feb 2020 16:51:02 -0800 Subject: [PATCH] Implement all miscellaneous ops (#17511) * Initial commit - added first batch of misc ops * Initial commit - added first batch of misc ops * Added remaining misc ops, including Custom op logic * Added more test cases, fixed lint errors * Update documentation * Added run_backward=True for ops supporting backwards runs * Added issue link for bilinear UpSampling * Added remaining misc ops, including Custom op logic * Update documentation * Updated alias map * Fixed missing and incorrect alias issues * Added remaining missing aliases * Fixed Custom profile dump parsing and alias * Switched to using sets for O(1) op membership checks * Added fix for dtype issue in master --- .../opperf/nd_operations/misc_operators.py | 124 ++++++++++++++++++ benchmark/opperf/opperf.py | 4 + benchmark/opperf/rules/default_params.py | 36 ++++- benchmark/opperf/utils/benchmark_utils.py | 2 +- benchmark/opperf/utils/op_registry_utils.py | 70 ++++++---- benchmark/opperf/utils/profiler_utils.py | 11 +- 6 files changed, 217 insertions(+), 30 deletions(-) create mode 100644 benchmark/opperf/nd_operations/misc_operators.py diff --git a/benchmark/opperf/nd_operations/misc_operators.py b/benchmark/opperf/nd_operations/misc_operators.py new file mode 100644 index 000000000000..5a0efc57de0d --- /dev/null +++ b/benchmark/opperf/nd_operations/misc_operators.py @@ -0,0 +1,124 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +"""Performance benchmark tests for MXNet NDArray Miscellaneous Operations. + +Below 16 Miscellaneous Operators are covered: + +['reset_arrays', 'multi_all_finite', 'multi_sum_sq', 'add_n', 'UpSampling', 'Custom', 'squeeze', +'all_finite', 'clip', 'multi_lars', 'SequenceReverse', 'SequenceLast', 'SequenceMask', 'cast_storage', +'cumsum', 'fill_element_0index'] + +""" + +import mxnet as mx + +from benchmark.opperf.utils.benchmark_utils import run_op_benchmarks +from benchmark.opperf.utils.op_registry_utils import get_remaining_miscellaneous_operators + +from benchmark.opperf.utils.benchmark_utils import run_performance_test +from benchmark.opperf.utils.common_utils import merge_map_list +from benchmark.opperf.rules.default_params import MX_OP_MODULE + +from benchmark.opperf.custom_operations.custom_operations import CustomAddOneProp + + +def run_mx_misc_operators_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='native', warmup=25, runs=100): + """Runs benchmarks with the given context and precision (dtype) for all the miscellaneous + operators in MXNet. + + Parameters + ---------- + ctx: mx.ctx + Context to run benchmarks + dtype: str, default 'float32' + Precision to use for benchmarks + profiler: str, default 'native' + Type of Profiler to use (native/python) + warmup: int, default 25 + Number of times to run for warmup + runs: int, default 100 + Number of runs to capture benchmark results + + Returns + ------- + Dictionary of results. Key -> Name of the operator, Value -> Benchmark results. + + """ + # Individual tests for ops with positional args + array_ops_benchmark = run_performance_test([getattr(MX_OP_MODULE, "reset_arrays"), + getattr(MX_OP_MODULE, "multi_all_finite"), + getattr(MX_OP_MODULE, "multi_sum_sq")], + run_backward=False, + dtype=dtype, + ctx=ctx, + profiler=profiler, + inputs=[{"args": [(1024, 1024)], + "num_arrays": 1}, + {"args": [(10000, 1)], + "num_arrays": 1}, + {"args": [(10000, 10)], + "num_arrays": 1}], + warmup=warmup, + runs=runs) + add_n_benchmark = run_performance_test([getattr(MX_OP_MODULE, "add_n")], + run_backward=True, + dtype=dtype, + ctx=ctx, + profiler=profiler, + inputs=[{"args": [(1024, 1024)]}, + {"args": [(10000, 1)]}, + {"args": [(10000, 10)]}], + warmup=warmup, + runs=runs) + # There are currently issus with UpSampling with bilinear interpolation. + # track issue here: https://github.com/apache/incubator-mxnet/issues/9138 + upsampling_benchmark = run_performance_test([getattr(MX_OP_MODULE, "UpSampling")], + run_backward=True, + dtype=dtype, + ctx=ctx, + profiler=profiler, + inputs=[{"args": (32, 3, 256, 256), + "scale": 2, + "sample_type": "nearest"}, + {"args": (32, 3, 10000, 1), + "scale": 4, + "sample_type": "nearest"}], + warmup=warmup, + runs=runs) + # Create and register CustomAddOne operator for use in Custom op testing + c = CustomAddOneProp() + c.create_operator(ctx, [(1024,1024)], [dtype]) + custom_benchmark = run_performance_test([getattr(MX_OP_MODULE, "Custom")], + run_backward=True, + dtype=dtype, + ctx=ctx, + profiler=profiler, + inputs=[{"args": [(1024, 1024)], + "op_type": "CustomAddOne"}, + {"args": [(10000, 1)], + "op_type": "CustomAddOne"}, + {"args": [(10000, 10)], + "op_type": "CustomAddOne"}], + warmup=warmup, + runs=runs) + + # Fetch remaining Miscellaneous Operators + mx_misc_ops = get_remaining_miscellaneous_operators() + # Run benchmarks + mx_misc_op_results = run_op_benchmarks(mx_misc_ops, dtype, ctx, profiler, warmup, runs) + return merge_map_list(array_ops_benchmark + add_n_benchmark + upsampling_benchmark + custom_benchmark + [mx_misc_op_results]) diff --git a/benchmark/opperf/opperf.py b/benchmark/opperf/opperf.py index dc71190e8659..5b8c43f417da 100755 --- a/benchmark/opperf/opperf.py +++ b/benchmark/opperf/opperf.py @@ -44,6 +44,7 @@ from benchmark.opperf.nd_operations.indexing_routines import run_indexing_routines_benchmarks from benchmark.opperf.nd_operations.nn_loss_operators import run_loss_operators_benchmarks from benchmark.opperf.nd_operations.linalg_operators import run_linalg_operators_benchmarks +from benchmark.opperf.nd_operations.misc_operators import run_mx_misc_operators_benchmarks from benchmark.opperf.utils.common_utils import merge_map_list, save_to_file from benchmark.opperf.utils.op_registry_utils import get_operators_with_no_benchmark, \ @@ -114,6 +115,9 @@ def run_all_mxnet_operator_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='n # Run all NN loss operations benchmarks with default input values mxnet_operator_benchmark_results.append(run_loss_operators_benchmarks(ctx=ctx, dtype=dtype, profiler=profiler, warmup=warmup, runs=runs)) + + # Run all Miscellaneous operations benchmarks with default input values + mxnet_operator_benchmark_results.append(run_mx_misc_operators_benchmarks(ctx=ctx, dtype=dtype, profiler=profiler, warmup=warmup, runs=runs)) # Run all Linear Algebra operations benchmarks with default input values mxnet_operator_benchmark_results.append(run_linalg_operators_benchmarks(ctx=ctx, dtype=dtype, profiler=profiler, warmup=warmup, runs=runs)) diff --git a/benchmark/opperf/rules/default_params.py b/benchmark/opperf/rules/default_params.py index 8f10e4ebbeb6..31940da8eb77 100644 --- a/benchmark/opperf/rules/default_params.py +++ b/benchmark/opperf/rules/default_params.py @@ -115,6 +115,22 @@ DEFAULT_DATA_4d = [(1, 4, 2, 4), (10, 25, 10, 100)] DEFAULT_BLOCK_SIZE = [2, 5] +# For miscellaneous operators +DEFAULT_DATA_SQUEEZE = [(1, 1024, 1024), (32, 1, 256, 256)] +DEFAULT_AXIS_SQUEEZE = [0, 1] +DEFAULT_A_MIN = [0.1] +DEFAULT_A_MAX = [0.9] +DEFAULT_LRS = [(1024, 1024), (10000, 1), (10000, 100)] +DEFAULT_WSS = [(1024, 1024), (10000, 1), (10000, 100)] +DEFAULT_GSS = [(1024, 1024), (10000, 1), (10000, 100)] +DEFAULT_WDS = [(1024, 1024), (10000, 1), (10000, 100)] +DEFAULT_ETA = [.5] +DEFAULT_STYPE = ['default', 'csr', 'row_sparse'] +DEFAULT_A = [(1024, 1024), (10000, 1), (10000, 100)] +DEFAULT_LHS_FEI = [(1024, 1024), (10000, 1), (10000, 100)] +DEFAULT_MHS = [(1024,), (10000,), (10000,)] +DEFAULT_RHS_FEI = [(1024,), (10000,), (10000,)] + # For swapaxis operator DEFAULT_DIM_1 = [0] DEFAULT_DIM_2 = [1] @@ -236,7 +252,22 @@ "axes": DEFAULT_AXES, "act_type_leakyrelu": DEFAULT_ACT_TYPE_LR, "label_softmax": DEFAULT_LABEL_SOFTMAX, - "act_type_activation": DEFAULT_ACT_TYPE_ACTIVATION} + "act_type_activation": DEFAULT_ACT_TYPE_ACTIVATION, + "data_squeeze": DEFAULT_DATA_SQUEEZE, + "axis_squeeze": DEFAULT_AXIS_SQUEEZE, + "a_min": DEFAULT_A_MIN, + "a_max": DEFAULT_A_MAX, + "lrs": DEFAULT_LRS, + "weights_sum_sq": DEFAULT_WSS, + "grads_sum_sq": DEFAULT_GSS, + "wds": DEFAULT_WDS, + "eta": DEFAULT_ETA, + "eps": DEFAULT_EPSILON, + "stype": DEFAULT_STYPE, + "a": DEFAULT_A, + "lhs_fill_element_0index": DEFAULT_LHS_FEI, + "rhs_fill_element_0index": DEFAULT_RHS_FEI, + "mhs": DEFAULT_MHS} # These are names of MXNet operator parameters that is of type NDArray. @@ -250,4 +281,5 @@ "weight", "weight32", "grad", "mean", "var", "mom", "n", "d", "v", "z", "g", "delta", "args", "indices", "shape_like", "y", "x", "condition", "a", "index", "raveL_data", "label", "grid", - "A", "B", "C", "r1", "r2", "rois"] + "A", "B", "C", "r1", "r2", "rois", "lrs", "wds", "weights_sum_sq", + "grads_sum_sq", "mhs"] diff --git a/benchmark/opperf/utils/benchmark_utils.py b/benchmark/opperf/utils/benchmark_utils.py index 60914118a56e..29223ff40aa9 100644 --- a/benchmark/opperf/utils/benchmark_utils.py +++ b/benchmark/opperf/utils/benchmark_utils.py @@ -26,7 +26,7 @@ from benchmark.opperf.rules.default_params import PARAMS_OF_TYPE_NDARRAY from .profiler_utils import cpp_profile, python_profile -no_backward = ['gather_nd', 'softmax_cross_entropy', 'linalg_gelqf', 'linalg_slogdet', 'moments'] +no_backward = ['gather_nd', 'softmax_cross_entropy', 'linalg_gelqf', 'linalg_slogdet', 'moments', 'SequenceLast'] def _prepare_op_inputs(inputs, run_backward, dtype, ctx): mx.random.seed(41) diff --git a/benchmark/opperf/utils/op_registry_utils.py b/benchmark/opperf/utils/op_registry_utils.py index d2598310e852..de7ad4dcc93f 100644 --- a/benchmark/opperf/utils/op_registry_utils.py +++ b/benchmark/opperf/utils/op_registry_utils.py @@ -113,15 +113,17 @@ def prepare_op_inputs(op, arg_params): inputs = [] # 4d tensor is needed only by following two ops - ops_4d = ['depth_to_space', 'space_to_depth'] + ops_4d = {'depth_to_space', 'space_to_depth'} # 3d tensor is needed by following ops - ops_3d = ['CTCLoss', 'ctc_loss'] + ops_3d = {'CTCLoss', 'ctc_loss'} # For ops with args that need to change shape/value for different ops - custom_data = ['Activation', 'LeakyReLU', 'Softmax', 'BilinearSampler', 'GridGenerator', 'sample_multinomial', 'linalg_maketrian'] + custom_data = {'Activation', 'LeakyReLU', 'Softmax', 'BilinearSampler', 'GridGenerator', + 'sample_multinomial', 'linalg_maketrian', 'squeeze', 'fill_element_0index'} - int_only = ['random_randint'] + int_only = {'random_randint'} + float_only = {'log_softmax', 'softmax', 'softmin'} # Prepare op to default input mapping arg_values = {} @@ -133,7 +135,7 @@ def prepare_op_inputs(op, arg_params): # rest all operators take int as well as float if op in int_only and arg_name == "dtype": arg_values[arg_name] = DEFAULTS_INPUTS["dtype_int"] - elif op.startswith(('random','sample')) and arg_name == "dtype": + elif (op.startswith(('random','sample')) or op in float_only) and arg_name == "dtype": arg_values[arg_name] = DEFAULTS_INPUTS["dtype_float"] elif "NDArray" in arg_type and op == "ravel_multi_index": arg_values[arg_name] = DEFAULTS_INPUTS["ravel_data"] @@ -185,7 +187,7 @@ def get_all_unary_operators(): {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ # Cast operators (cast & amp_cast are unary) - cast_ops = ['cast', 'amp_cast'] + cast_ops = {'cast', 'amp_cast'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() @@ -232,7 +234,7 @@ def get_all_misc_binary_operators(): # Filter for miscellaneous binary operators binary_misc_mx_operators = {} - for op_name, op_params in mx_operators.items(): + for op_name, _ in mx_operators.items(): if "choose_element_0index" == op_name: binary_misc_mx_operators[op_name] = mx_operators[op_name] elif "reshape_like" == op_name: @@ -270,7 +272,7 @@ def get_all_random_sampling_operators(): {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ # Additional Random Sampling ops which do not start with "random_" or "sample_" - additional_random_sampling_ops = ['GridGenerator', 'BilinearSampler'] + additional_random_sampling_ops = {'GridGenerator', 'BilinearSampler'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() @@ -290,10 +292,10 @@ def get_all_linalg_operators(): ------- {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ - other_linalg_ops = ['moments'] + other_linalg_ops = {'moments'} # Already tested linalg_potrf independently - independently_tested = ['linalg_potrf'] + independently_tested = {'linalg_potrf'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() @@ -333,7 +335,7 @@ def get_all_nn_activation_operators(): ------- {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ - nn_activation_ops = ['Softmax', 'SoftmaxActivation', 'softmin', 'Activation', 'LeakyReLU', 'hard_sigmoid', 'softmax', 'log_softmax'] + nn_activation_ops = {'Softmax', 'SoftmaxActivation', 'softmin', 'Activation', 'LeakyReLU', 'hard_sigmoid', 'softmax', 'log_softmax'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() @@ -353,17 +355,17 @@ def get_all_optimizer_operators(): ------- {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ - optimizer_ops = ['mp_sgd_update', 'signum_update', 'rmspropalex_update', 'ftml_update', 'rmsprop_update', + optimizer_ops = {'mp_sgd_update', 'signum_update', 'rmspropalex_update', 'ftml_update', 'rmsprop_update', 'sgd_mom_update', 'signsgd_update', 'mp_sgd_mom_update', 'ftrl_update', 'sgd_update', 'adam_update', 'mp_nag_mom_update', 'nag_mom_update', 'lamb_update_phase1', - 'lamb_update_phase2'] + 'lamb_update_phase2'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() # Filter for Optimizer operators optimizer_mx_operators = {} - for op_name, op_params in mx_operators.items(): + for op_name, _ in mx_operators.items(): if op_name in optimizer_ops: optimizer_mx_operators[op_name] = mx_operators[op_name] return optimizer_mx_operators @@ -375,14 +377,14 @@ def get_all_sorting_searching_operators(): ------- {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ - sort_search_ops = ['sort', 'argsort', 'argmax', 'argmin', 'topk'] + sort_search_ops = {'sort', 'argsort', 'argmax', 'argmin', 'topk'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() # Filter for Sort and search operators sort_search_mx_operators = {} - for op_name, op_params in mx_operators.items(): + for op_name, _ in mx_operators.items(): if op_name in sort_search_ops: sort_search_mx_operators[op_name] = mx_operators[op_name] return sort_search_mx_operators @@ -395,33 +397,53 @@ def get_all_rearrange_operators(): ------- {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ - rearrange_ops = ['transpose','swapaxes','flip','depth_to_space','space_to_depth'] + rearrange_ops = {'transpose','swapaxes','flip','depth_to_space','space_to_depth'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() # Filter for Array Rearrange operators rearrange_mx_operators = {} - for op_name, op_params in mx_operators.items(): + for op_name, _ in mx_operators.items(): if op_name in rearrange_ops: rearrange_mx_operators[op_name] = mx_operators[op_name] return rearrange_mx_operators -def get_all_indexing_routines(): - """Gets all indexing routines registered with MXNet. +def get_remaining_miscellaneous_operators(): + """Gets remaining Miscellaneous operators registered with MXNet not covered by individual tests. Returns ------- {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ + misc_ops = {'squeeze', 'all_finite', 'clip', 'multi_lars', 'SequenceReverse', 'SequenceLast', 'SequenceMask', 'cast_storage', 'cumsum', 'fill_element_0index'} + + # Get all mxnet operators + mx_operators = _get_all_mxnet_operators() + + # Filter for Miscellaneous operators + misc_mx_operators = {} + for op_name, _ in mx_operators.items(): + if op_name in misc_ops: + misc_mx_operators[op_name] = mx_operators[op_name] + return misc_mx_operators + +def get_all_indexing_routines(): + """Gets all indexing routines registered with MXNet. + # @ChaiBapchya unravel_index errors out on certain inputs # tracked here https://github.com/apache/incubator-mxnet/issues/16771 # @ChaiBapchya scatter_nd errors with core dump # tracked here https://github.com/apache/incubator-mxnet/issues/17480 - indexing_routines = ['slice', 'slice_axis', 'slice_like', 'take', 'one_hot', - 'where', 'ravel_multi_index', 'gather_nd', 'pick'] + Returns + ------- + {"operator_name": {"has_backward", "nd_op_handle", "params"}} + """ + indexing_routines = {'slice', 'slice_axis', 'slice_like', 'take', 'one_hot', + 'where', 'ravel_multi_index', 'gather_nd', 'pick'} + # Get all mxnet operators mx_operators = _get_all_mxnet_operators() @@ -440,14 +462,14 @@ def get_all_loss_operators(): ------- {"operator_name": {"has_backward", "nd_op_handle", "params"}} """ - loss_ops = ['smooth_l1', 'CTCLoss', 'ctc_loss', 'MakeLoss', 'softmax_cross_entropy'] + loss_ops = {'smooth_l1', 'CTCLoss', 'ctc_loss', 'MakeLoss', 'softmax_cross_entropy'} # Get all mxnet operators mx_operators = _get_all_mxnet_operators() # Filter for NN Loss operators loss_mx_operators = {} - for op_name, op_params in mx_operators.items(): + for op_name, _ in mx_operators.items(): if op_name in loss_ops: loss_mx_operators[op_name] = mx_operators[op_name] return loss_mx_operators diff --git a/benchmark/opperf/utils/profiler_utils.py b/benchmark/opperf/utils/profiler_utils.py index fa959bf5a8b1..e795a3aaa535 100644 --- a/benchmark/opperf/utils/profiler_utils.py +++ b/benchmark/opperf/utils/profiler_utils.py @@ -48,8 +48,9 @@ def _get_operator_profile(operator_name, operator_profile_results): # alias map : dictionary of the form {"alias" : "registered_name"} # allows to retrieve alias operator profile from the profiler results # TODO handling - "identity" : "_copy" - alias_map = {"broadcast_plus": "broadcast_add", "broadcast_minus": "broadcast_sub", "flatten": "Flatten", "max_axis": "max", - "swapaxes": "SwapAxis", "flip": "reverse", "reshape": "Reshape", "crop": "slice", "sum_axis": "sum", "min_axis": "min", "CTCLoss": "ctc_loss"} + alias_map = {"broadcast_plus": "broadcast_add", "broadcast_minus": "broadcast_sub", "flatten": "Flatten", "max_axis": "max", "Custom": "CustomAddOne", + "swapaxes": "SwapAxis", "flip": "reverse", "reshape": "Reshape", "crop": "slice", "sum_axis": "sum", "min_axis": "min", "ctc_loss": "CTCLoss", + "fill_element_0index": "TernaryOp", "identity": "_copy", "ElementWiseSum": "add_n", "choose_element_0index": "pick", "stop_gradient": "BlockGrad"} op_name = None @@ -135,7 +136,11 @@ def parse_profiler_dump(operator_name, profiler_dump): # String Patterns to look out for when parsing memory_profile_result_start = "Device Storage" # Helps identify start of Memory profile c_api_profile_result_start = "MXNET_C_API" # Helps identify end of Memory profile - operator_profile_result_start = "operator" # Helps identify start of Operator profile + + if operator_name == "Custom": + operator_profile_result_start = "Custom Operator" # Helps identify start of Custom Operator profile + else: + operator_profile_result_start = "operator" # Helps identify start of Operator profile memory_profile_results = [] operator_profile_results = []