-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtest.py
80 lines (62 loc) · 3.25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import argparse
from models.generator import Generator
from data.vg_custom_mask import get_dataloader as get_dataloader_vg
from data.coco_custom_mask import get_dataloader as get_dataloader_coco
from utils.data import imagenet_deprocess_batch
from imageio import imwrite
import os
from pathlib import Path
import torch.backends.cudnn as cudnn
def main(config):
cudnn.benchmark = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
result_save_dir = config.results_dir
if not Path(result_save_dir).exists(): Path(result_save_dir).mkdir(parents=True)
if config.dataset == 'vg':
train_data_loader, val_data_loader = get_dataloader_vg(batch_size=config.batch_size, VG_DIR=config.vg_dir)
elif config.dataset == 'coco':
train_data_loader, val_data_loader = get_dataloader_coco(batch_size=config.batch_size, COCO_DIR=config.coco_dir)
vocab_num = train_data_loader.dataset.num_objects
assert config.clstm_layers > 0
netG = Generator(num_embeddings=vocab_num, embedding_dim=config.embedding_dim, z_dim=config.z_dim, clstm_layers=config.clstm_layers).to(device)
print('load model from: {}'.format(config.saved_model))
netG.load_state_dict(torch.load(config.saved_model))
data_loader = val_data_loader
data_iter = iter(data_loader)
with torch.no_grad():
netG.eval()
for i, batch in enumerate(data_iter):
print('batch {}'.format(i))
imgs, objs, boxes, masks, obj_to_img = batch
z = torch.randn(objs.size(0), config.z_dim)
imgs, objs, boxes, masks, obj_to_img, z = imgs.to(device), objs.to(device), boxes.to(device), masks.to(device), obj_to_img, z.to(device)
# Generate fake image
output = netG(imgs, objs, boxes, masks, obj_to_img, z)
crops_input, crops_input_rec, crops_rand, img_rec, img_rand, mu, logvar, z_rand_rec = output
img_rand = imagenet_deprocess_batch(img_rand)
# Save the generated images
for j in range(img_rand.shape[0]):
img_np = img_rand[j].numpy().transpose(1, 2, 0)
img_path = os.path.join(result_save_dir, 'img{:06d}.png'.format(i*config.batch_size+j))
imwrite(img_path, img_np)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Datasets configuration
parser.add_argument('--dataset', type=str, default='coco')
parser.add_argument('--vg_dir', type=str, default='datasets/vg')
parser.add_argument('--coco_dir', type=str, default='datasets/coco')
# Model configuration
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--image_size', type=int, default=64)
parser.add_argument('--object_size', type=int, default=32)
parser.add_argument('--embedding_dim', type=int, default=64)
parser.add_argument('--z_dim', type=int, default=64)
parser.add_argument('--resi_num', type=int, default=6)
parser.add_argument('--clstm_layers', type=int, default=3)
# Model setting
parser.add_argument('--saved_model', type=str, default='checkpoints/pretrained/netG_coco.pkl')
config = parser.parse_args()
config.results_dir = 'checkpoints/pretrained_results_{}'.format(config.dataset)
print(config)
main(config)