-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtest.py
executable file
·114 lines (89 loc) · 3.59 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# ------------------------------------------------------------------------------
# pose.pytorch
# Copyright (c) 2018-present Microsoft
# Licensed under The Apache-2.0 License [see LICENSE for details]
# Written by Bin Xiao ([email protected])
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import pprint
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
sys.path.append(os.path.join(os.path.dirname(__file__), 'lib'))
from config import cfg
from config import update_config
from core.loss import JointsMSELoss
from core.function import validate
from utils.utils import create_logger, get_model_summary
import dataset
import models
def parse_args():
parser = argparse.ArgumentParser(description='Test keypoints network')
# general
parser.add_argument('--cfg',
help='experiment configure file name',
type=str,
# default="experiments/mpii/lpn/lpn50_256x256_gd256x2_gc.yaml")
default="experiments/coco/lpn/lpn50_256x192_gd256x2_gc.yaml")
# philly
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='')
args = parser.parse_args()
return args
def main():
args = parse_args()
update_config(cfg, args)
logger, final_output_dir, tb_log_dir = create_logger(cfg, args.cfg, 'valid')
logger.info(pprint.pformat(args))
logger.info(cfg)
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
model = eval('models.' + cfg.MODEL.NAME + '.get_pose_net')(cfg, is_train=False)
logger.info(get_model_summary(model.cuda(), torch.zeros(1, 3, *cfg.MODEL.IMAGE_SIZE).cuda()))
if cfg.TEST.MODEL_FILE:
logger.info('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
else:
model_state_file = os.path.join(final_output_dir, 'model_best.pth')
logger.info('=> loading model from {}'.format(model_state_file))
model.load_state_dict(torch.load(model_state_file))
model = torch.nn.DataParallel(model, device_ids=cfg.GPUS).cuda()
# define loss function (criterion) and optimizer
criterion = JointsMSELoss(use_target_weight=cfg.LOSS.USE_TARGET_WEIGHT).cuda()
# Data loading code
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
valid_dataset = eval('dataset.' + cfg.DATASET.DATASET)(
cfg, cfg.DATASET.ROOT, cfg.DATASET.TEST_SET, False,
transforms.Compose([
transforms.ToTensor(),
normalize,
])
)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=cfg.TEST.BATCH_SIZE_PER_GPU * len(cfg.GPUS),
shuffle=False,
num_workers=cfg.WORKERS,
pin_memory=True
)
# evaluate on validation set
validate(cfg, valid_loader, valid_dataset, model, criterion, final_output_dir, tb_log_dir)
if __name__ == '__main__':
main()