-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparsed_private_key.txt
32 lines (24 loc) · 2.81 KB
/
parsed_private_key.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# This text was generated with
# `openssl asn1parse -in private_key > parsed_private_key.txt`
# I'm only going to go over the important parts: the modulus, e, and d
0:d=0 hl=4 l= 605 cons: SEQUENCE
4:d=1 hl=2 l= 1 prim: INTEGER :00
# The next number is the modulus n
7:d=1 hl=3 l= 129 prim: INTEGER :DA3834CEB558DA1EBF9CF3FA1AAC132E35EA0A1BCBCDF435E4E7E9A89A994D8E173FC84FAAB78A66FDC0F2C15D13C6D1C7F07868232F330BE10016C05D435370A3CD339EC93E7630C987A42D22228DC10978FB36F2867AC5CCE89E84B09020103634FD8E4F05969AB2DBBFC1F8D5450FFDB8AA14B82870FB49A45A9FD0635A91
# Next is the public exponent e
139:d=1 hl=2 l= 3 prim: INTEGER :010001
# And finally the private exponent d
144:d=1 hl=3 l= 128 prim: INTEGER :0AB99A76D258E4978049618058513EBC15B04400EBBA5A974F81CA6D1BF40EE8BDE1C7A18ABD6C92F543C76A937D865707219D7958C95813EC6209BC3899377F897D451853EE1B69A1DD03D1BEFDCF64D7BE9A3EF0B1D8223F6606784EEBA5C43BC1D836D74655A478239E50FD20B6323AE429CDF0468CBFA2F5A0B3D5982FB1
# The rest of these are P, Q, and some other numbers used in the generation
# We'll use P and Q for the blind signing
275:d=1 hl=2 l= 65 prim: INTEGER :F5B2E183392A27F85CBF274A24D2F07301B9619220AF0F6876D5128E2830F98086C5D7182F23615235DC885E8FB8E643D04677FC9DDC7B0764E4E44C707F684D
342:d=1 hl=2 l= 65 prim: INTEGER :E35E6325E49C1B5FFBB6A162E2A43A76138E2A54B5CD7F8B788C5D485D4C4277B87D0FAD15B24A0AE8EBF245F7E0BC592A50AE12886A3D77EE2F50B216D91D55
409:d=1 hl=2 l= 65 prim: INTEGER :92F9E2F540A8FB2813333629A0459F18ED1B1C46F1CE470552B0BB5CD6A6155AD144601B537772AC5F14016FAFC207DCE12686785366A5221334E96CE08F16B1
476:d=1 hl=2 l= 64 prim: INTEGER :480973A861D203EA5939F7CFF8B6C7BEF95B259649339EA175C42319F6555F09C76DF83582964657468CDAE9C82B70016022C7C41F6C69A541D5C3DF68D5C931
542:d=1 hl=2 l= 65 prim: INTEGER :9B86289D5D7BA9D008F3E6D18533F4D6C21196F8385CB6CF37CEB6035C11C14FFB3E6FB923C2FC3AC9E67D58C3FDA0AD67064A118DA144D18F893A292ACD9EC9
# For ease of copy/pasting
N = 0xDA3834CEB558DA1EBF9CF3FA1AAC132E35EA0A1BCBCDF435E4E7E9A89A994D8E173FC84FAAB78A66FDC0F2C15D13C6D1C7F07868232F330BE10016C05D435370A3CD339EC93E7630C987A42D22228DC10978FB36F2867AC5CCE89E84B09020103634FD8E4F05969AB2DBBFC1F8D5450FFDB8AA14B82870FB49A45A9FD0635A91
E = 0x010001
D = 0x0AB99A76D258E4978049618058513EBC15B04400EBBA5A974F81CA6D1BF40EE8BDE1C7A18ABD6C92F543C76A937D865707219D7958C95813EC6209BC3899377F897D451853EE1B69A1DD03D1BEFDCF64D7BE9A3EF0B1D8223F6606784EEBA5C43BC1D836D74655A478239E50FD20B6323AE429CDF0468CBFA2F5A0B3D5982FB1
P = 0xF5B2E183392A27F85CBF274A24D2F07301B9619220AF0F6876D5128E2830F98086C5D7182F23615235DC885E8FB8E643D04677FC9DDC7B0764E4E44C707F684D
Q = 0xE35E6325E49C1B5FFBB6A162E2A43A76138E2A54B5CD7F8B788C5D485D4C4277B87D0FAD15B24A0AE8EBF245F7E0BC592A50AE12886A3D77EE2F50B216D91D55