forked from lars76/kmeans-anchor-boxes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
36 lines (25 loc) · 949 Bytes
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import glob
import xml.etree.ElementTree as ET
import numpy as np
from kmeans import kmeans, avg_iou
ANNOTATIONS_PATH = "Annotations"
CLUSTERS = 5
def load_dataset(path):
dataset = []
for xml_file in glob.glob("{}/*xml".format(path)):
tree = ET.parse(xml_file)
height = int(tree.findtext("./size/height"))
width = int(tree.findtext("./size/width"))
for obj in tree.iter("object"):
xmin = int(obj.findtext("bndbox/xmin")) / width
ymin = int(obj.findtext("bndbox/ymin")) / height
xmax = int(obj.findtext("bndbox/xmax")) / width
ymax = int(obj.findtext("bndbox/ymax")) / height
dataset.append([xmax - xmin, ymax - ymin])
return np.array(dataset)
data = load_dataset(ANNOTATIONS_PATH)
out = kmeans(data, k=CLUSTERS)
print("Accuracy: {:.2f}%".format(avg_iou(data, out) * 100))
print("Boxes:\n {}".format(out))
ratios = np.around(out[:, 0] / out[:, 1], decimals=2).tolist()
print("Ratios:\n {}".format(sorted(ratios)))