-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
369 lines (297 loc) · 14.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
import torch.nn as nn
import torch.nn.init as init
import torchvision.models as models
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import torch.backends.cudnn as cudnn
from torch.nn.utils.clip_grad import clip_grad_norm
import numpy as np
from collections import OrderedDict
import torch.nn.functional as F
from IPython import embed
from layers import *
from loss import *
from decoder.loss import *
from decoder.model import *
from decoder.layers import *
import time
class EncoderImage(nn.Module):
def __init__(self, img_dim, embed_size, bidirectional=False, rnn_type='maxout'):
super(EncoderImage, self).__init__()
self.embed_size = embed_size
self.bidirectional = bidirectional
if rnn_type == 'attention':
self.rnn = Attention(img_dim, embed_size, rnn_bidirectional=bidirectional)
elif rnn_type == 'seq2seq':
self.rnn = Seq2Seq(img_dim, embed_size, rnn_bidirectional=bidirectional)
elif rnn_type == 'maxout':
self.rnn = Maxout(img_dim, embed_size, rnn_bidirectional=bidirectional)
else:
raise ValueError('Unsupported RNN type')
def forward(self, x, lengths):
"""Extract image feature vectors."""
outputs = self.rnn(x, lengths)
# normalization in the joint embedding space
# return F.normalize(outputs)
return outputs
class EncoderSequence(nn.Module):
def __init__(self, img_dim, embed_size, bidirectional=False, rnn_type='maxout'):
super(EncoderSequence, self).__init__()
self.embed_size = embed_size
self.bidirectional = bidirectional
if rnn_type == 'attention':
self.rnn = Attention(img_dim, embed_size, rnn_bidirectional=bidirectional)
elif rnn_type == 'seq2seq':
self.rnn = Seq2Seq(img_dim, embed_size, rnn_bidirectional=bidirectional)
elif rnn_type == 'maxout':
self.rnn = Maxout(img_dim, embed_size, rnn_bidirectional=bidirectional)
else:
raise ValueError('Unsupported RNN type')
def forward(self, x, lengths, hidden=None):
"""Extract image feature vectors."""
outputs = self.rnn(x, lengths, hidden)
# normalization in the joint embedding space
# return F.normalize(outputs)
return outputs
class EncoderText(nn.Module):
def __init__(self, vocab_size, word_dim, embed_size,
bidirectional=False, rnn_type='maxout', data_name='anet_precomp'):
super(EncoderText, self).__init__()
self.embed_size = embed_size
self.bidirectional = bidirectional
# word embedding
self.embed = nn.Embedding(vocab_size, word_dim)
# caption embedding
if rnn_type == 'attention':
self.rnn = Attention(word_dim, embed_size, rnn_bidirectional=bidirectional)
elif rnn_type == 'seq2seq':
self.rnn = Seq2Seq(word_dim, embed_size, rnn_bidirectional=bidirectional)
elif rnn_type == 'maxout':
self.rnn = Maxout(word_dim, embed_size, rnn_bidirectional=bidirectional)
else:
raise ValueError('Unsupported RNN type')
self.init_weights(data_name)
def init_weights(self, data_name):
self.embed.weight.data = torch.from_numpy(np.load('vocab/{}_w2v_total.npz'.format(data_name))['arr_0'].astype(float)).float()
def forward(self, x, lengths):
# Embed word ids to vectors
cap_emb = self.embed(x)
outputs = self.rnn(cap_emb, lengths)
# normalization in the joint embedding space
# return F.normalize(outputs), cap_emb
return outputs, cap_emb
class VSE(object):
def __init__(self, opt):
self.norm = opt.norm
self.grad_clip = opt.grad_clip
self.clip_enc = EncoderImage(opt.img_dim, opt.img_first_size,
rnn_type=opt.rnn_type)
self.txt_enc = EncoderText(opt.vocab_size, opt.word_dim, opt.cap_first_size,
rnn_type=opt.rnn_type, data_name = opt.data_name)
self.vid_seq_enc = EncoderSequence(opt.img_first_size, opt.embed_size,
rnn_type=opt.rnn_type)
self.txt_seq_enc = EncoderSequence(opt.cap_first_size, opt.embed_size,
rnn_type=opt.rnn_type)
if torch.cuda.is_available():
self.clip_enc.cuda()
self.txt_enc.cuda()
self.vid_seq_enc.cuda()
self.txt_seq_enc.cuda()
cudnn.benchmark = True
# Loss and Optimizer
self.criterion = ContrastiveLoss(margin=opt.margin,
measure=opt.measure,
max_violation=opt.max_violation, norm=self.norm)
self.weak_criterion = GroupWiseContrastiveLoss(margin=opt.margin,
measure=opt.measure,
max_violation=opt.max_violation, norm=self.norm)
params = list(self.txt_enc.parameters())
params += list(self.clip_enc.parameters())
params += list(self.vid_seq_enc.parameters())
params += list(self.txt_seq_enc.parameters())
if opt.reconstruct_loss:
self.vid_seq_dec = DecoderSequence(opt.embed_size, opt.img_first_size,
rnn_type=opt.decode_rnn_type)
self.txt_seq_dec = DecoderSequence(opt.embed_size, opt.cap_first_size,
rnn_type=opt.decode_rnn_type)
self.vid_seq_dec.cuda()
self.txt_seq_dec.cuda()
self.criterion_Euclid_Distance = EuclideanLoss(norm=self.norm)
params += list(self.vid_seq_dec.parameters())
params += list(self.txt_seq_dec.parameters())
if opt.lowest_reconstruct_loss:
self.clip_seq_dec = DecoderSequence(opt.embed_size, opt.img_dim, rnn_type=opt.decode_rnn_type)
self.sent_seq_dec = DecoderSequence(opt.embed_size, opt.word_dim, rnn_type=opt.decode_rnn_type)
self.clip_seq_dec.cuda()
self.sent_seq_dec.cuda()
params += list(self.clip_seq_dec.parameters())
params += list(self.sent_seq_dec.parameters())
self.params = params
self.optimizer = torch.optim.Adam(params, lr=opt.learning_rate)
self.Eiters = 0
def state_dict(self, opt):
state_dict = [self.clip_enc.state_dict(), self.txt_enc.state_dict(), \
self.vid_seq_enc.state_dict(), self.txt_seq_enc.state_dict()]
if opt.reconstruct_loss:
state_dict = [self.clip_enc.state_dict(), self.txt_enc.state_dict(), \
self.vid_seq_enc.state_dict(), self.txt_seq_enc.state_dict(), \
self.vid_seq_dec.state_dict(), self.txt_seq_dec.state_dict()]
if opt.lowest_reconstruct_loss:
state_dict = [self.clip_enc.state_dict(), self.txt_enc.state_dict(), \
self.vid_seq_enc.state_dict(), self.txt_seq_enc.state_dict(), \
self.vid_seq_dec.state_dict(), self.txt_seq_dec.state_dict(), \
self.clip_seq_dec.state_dict(), self.sent_seq_dec.state_dict()]
return state_dict
def load_state_dict(self, state_dict, opt):
self.clip_enc.load_state_dict(state_dict[0])
self.txt_enc.load_state_dict(state_dict[1])
self.vid_seq_enc.load_state_dict(state_dict[2])
self.txt_seq_enc.load_state_dict(state_dict[3])
if opt.reconstruct_loss:
self.vid_seq_dec.load_state_dict(state_dict[4])
self.txt_seq_dec.load_state_dict(state_dict[5])
if opt.lowest_reconstruct_loss:
self.clip_seq_dec.load_state_dict(state_dict[6])
self.sent_seq_dec.load_state_dict(state_dict[7])
def train_start(self, opt):
"""switch to train mode
"""
self.clip_enc.train()
self.txt_enc.train()
self.vid_seq_enc.train()
self.txt_seq_enc.train()
if opt.reconstruct_loss:
self.vid_seq_dec.train()
self.txt_seq_dec.train()
if opt.lowest_reconstruct_loss:
self.clip_seq_dec.train()
self.sent_seq_dec.train()
def val_start(self, opt):
"""switch to evaluate mode
"""
self.clip_enc.eval()
self.txt_enc.eval()
self.vid_seq_enc.eval()
self.txt_seq_enc.eval()
if opt.reconstruct_loss:
self.vid_seq_dec.eval()
self.txt_seq_dec.eval()
if opt.lowest_reconstruct_loss:
self.clip_seq_dec.eval()
self.sent_seq_dec.eval()
def forward_emb(self, clips, captions, lengths_clip, lengths_cap, return_word=False):
clips = Variable(clips)
captions = Variable(captions)
if torch.cuda.is_available():
clips = clips.cuda()
captions = captions.cuda()
# Forward
clip_emb = self.clip_enc(clips, Variable(lengths_clip))
cap_emb, word = self.txt_enc(captions, Variable(lengths_cap))
if return_word:
return clip_emb, cap_emb, word
else:
return clip_emb, cap_emb
def structure_emb(self, clip_emb, cap_emb, num_clips, num_caps, vid_context=None, para_context=None):
img_reshape_emb = Variable(torch.zeros(len(num_clips), max(num_clips), clip_emb.shape[1])).cuda()
cap_reshape_emb = Variable(torch.zeros(len(num_caps), max(num_caps), cap_emb.shape[1])).cuda()
cur_displace = 0
for i, end_place in enumerate(num_clips):
img_reshape_emb[i, 0:end_place, :] = clip_emb[cur_displace : cur_displace + end_place, :]
cur_displace = cur_displace + end_place
cur_displace = 0
for i, end_place in enumerate(num_caps):
cap_reshape_emb[i, 0:end_place, :] = cap_emb[cur_displace : cur_displace + end_place, :]
cur_displace = cur_displace + end_place
vid_emb = self.vid_seq_enc(img_reshape_emb, Variable(torch.Tensor(num_clips).long()), vid_context)
para_emb = self.txt_seq_enc(cap_reshape_emb, Variable(torch.Tensor(num_caps).long()), para_context)
return vid_emb, para_emb
def reconstruct_emb(self, vid_emb, para_emb, num_clips, num_caps):
vid_reshape_emb = Variable(torch.zeros(len(num_clips), max(num_clips), vid_emb.shape[1])).cuda()
para_reshape_emb = Variable(torch.zeros(len(num_caps), max(num_caps), para_emb.shape[1])).cuda()
for i, end_place in enumerate(num_clips):
vid_reshape_emb[i, :end_place, :] = vid_emb[i].expand(1, end_place, vid_emb.shape[1])
for i, end_place in enumerate(num_caps):
para_reshape_emb[i, :end_place, :] = para_emb[i,:].expand(1, end_place, para_emb.shape[1])
clip_emb = self.vid_seq_dec(vid_reshape_emb, Variable(torch.Tensor(num_clips)))
sent_emb = self.txt_seq_dec(para_reshape_emb, Variable(torch.Tensor(num_caps)))
return clip_emb, sent_emb
def lowest_reconstruct_emb(self, vid_emb, para_emb, num_clips, num_caps):
vid_reshape_emb = Variable(torch.zeros(len(num_clips), max(num_clips), vid_emb.shape[1])).cuda()
para_reshape_emb = Variable(torch.zeros(len(num_caps), max(num_caps), para_emb.shape[1])).cuda()
for i, end_place in enumerate(num_clips):
vid_reshape_emb[i, :end_place, :] = vid_emb[i].view(1,1,-1).expand(1, end_place, vid_emb.shape[1])
for i, end_place in enumerate(num_caps):
para_reshape_emb[i, :end_place, :] = para_emb[i,:].view(1,1,-1).expand(1, end_place, para_emb.shape[1])
frame_emb = self.clip_seq_dec(vid_reshape_emb, Variable(torch.Tensor(num_clips)))
word_emb = self.sent_seq_dec(para_reshape_emb, Variable(torch.Tensor(num_caps)))
return frame_emb, word_emb
def forward_loss(self, clip_emb, cap_emb, name, **kwargs):
"""Compute the loss given pairs of image and caption embeddings
"""
loss = self.criterion(clip_emb, cap_emb)
self.logger.update('Le'+name, loss.item(), clip_emb.size(0))
return loss
def forward_weak_loss(self, clip_emb, cap_emb, num_clips, num_caps, name, **kwargs):
"""Compute the loss given pairs of image and caption embeddings
"""
loss = self.weak_criterion(clip_emb, cap_emb, num_clips, num_caps)
self.logger.update('Le'+name, loss.item(), clip_emb.size(0))
return loss
def forward_reconstruct_loss(self, clip_recon, clip_emb, name, **kwargs):
"""Compute the loss given pairs of image and caption embeddings
"""
loss = self.criterion_Euclid_Distance(clip_recon, clip_emb)
self.logger.update('Le'+name, loss.item(), clip_emb.size(0))
return loss
def train_emb(self, opts, clips, captions, videos, paragraphs,
lengths_clip, lengths_cap, lengths_video, lengths_paragraph,
num_clips, num_caps, ind, cur_vid, *args):
"""One training step given clips and captions.
"""
self.Eiters += 1
self.logger.update('Eit', self.Eiters)
self.logger.update('lr', self.optimizer.param_groups[0]['lr'])
# compute the embeddings
clip_emb, cap_emb, word = self.forward_emb(clips, captions, lengths_clip, lengths_cap, return_word=True)
vid_context, para_context = self.forward_emb(videos, paragraphs, lengths_video, lengths_paragraph)
vid_emb, para_emb = self.structure_emb(clip_emb, cap_emb, num_clips, num_caps, vid_context, para_context)
if opts.reconstruct_loss:
clip_recon, cap_recon = self.reconstruct_emb(vid_emb, para_emb, num_clips, num_caps)
if opts.lowest_reconstruct_loss:
frame_recon, sent_recon = self.lowest_reconstruct_emb(clip_recon, cap_recon, lengths_clip.numpy(), lengths_cap.numpy())
# measure accuracy and record loss
self.optimizer.zero_grad()
loss = 0
loss_1 = self.forward_loss(F.normalize(vid_emb), F.normalize(para_emb), '_vid')
loss_3 = self.forward_loss(F.normalize(vid_context), F.normalize(para_context), '_ctx_low_lvel')
loss_5 = (self.forward_loss(F.normalize(vid_emb), F.normalize(vid_emb), '_vid_inloss') + self.forward_loss(F.normalize(para_emb), F.normalize(para_emb), '_para_inloss'))/2
loss = loss + loss_1 + loss_3 + loss_5
if opts.low_level_loss:
if opts.weak_low_level_loss:
loss_2 = self.forward_weak_loss(F.normalize(clip_emb), F.normalize(cap_emb), num_clips, num_caps, '_wlow_lvel')
else:
loss_2 = self.forward_loss(F.normalize(clip_emb), F.normalize(cap_emb), '_low_lvel')
loss_6 = (self.forward_loss(F.normalize(clip_emb), F.normalize(clip_emb), '_clip_inloss') + self.forward_loss(F.normalize(cap_emb), F.normalize(cap_emb), '_cap_inloss'))/2
loss = loss + loss_2 + loss_6
if opts.reconstruct_loss:
loss_recon = (self.forward_reconstruct_loss(clip_recon, clip_emb.detach(), '_clip_recon') + self.forward_reconstruct_loss(cap_recon, cap_emb.detach(), '_cap_recon'))
loss = loss + loss_recon * opts.weight_recon
if opts.lowest_reconstruct_loss:
clips_var = torch.zeros(lengths_clip.sum().item(), opts.img_dim)
curpos = 0
for i in range(clips.shape[0]):
clips_var[curpos: curpos+lengths_clip[i],:] = clips[i,0:lengths_clip[i],:]
curpos = curpos + lengths_clip[i]
words_var = Variable(torch.zeros(lengths_cap.sum().item(), 300)).cuda()
curpos = 0
for i in range(captions.shape[0]):
words_var[curpos: curpos+lengths_cap[i],:] = word[i,0:lengths_cap[i],:]
curpos = curpos + lengths_cap[i]
loss_lowest_recon = self.forward_reconstruct_loss(frame_recon, Variable(clips_var).cuda().detach(), '_reconstruct_frame_hier') + self.forward_reconstruct_loss(sent_recon, words_var.detach(), '_reconstruct_word_hier')
loss = loss + loss_lowest_recon * opts.lowest_weight_recon
# compute gradient and do SGD step
loss.backward()
if self.grad_clip > 0: clip_grad_norm(self.params, self.grad_clip)
self.optimizer.step()