- Overview
- Basic Usage
- Streaming Responses
- Batch Processing
- Configuration
- Best Practices
- Common Issues
This document provides a comprehensive guide on how to use LlamaHome's inference capabilities effectively.
The simplest way to run inference is using the InferencePipeline
:
from src.inference import InferenceConfig, InferencePipeline
config = InferenceConfig(
processing=ProcessingConfig(
max_length=512,
temperature=0.7,
top_p=0.9
)
)
pipeline = InferencePipeline("facebook/opt-1.3b", config)
response = await pipeline.generate("What is machine learning?")
For real-time responses, use the StreamingPipeline
:
from src.inference import StreamingPipeline
pipeline = StreamingPipeline("facebook/opt-1.3b", config)
async for chunk in pipeline.generate_stream("Explain quantum computing"):
print(chunk, end="", flush=True)
Process multiple prompts efficiently:
prompts = [
"What is Python?",
"Explain databases",
"How does the internet work?"
]
responses = await pipeline.generate_batch(prompts)
config = InferenceConfig(
processing=ProcessingConfig(
max_length=512, # Maximum response length
temperature=0.7, # Randomness (0.0-1.0)
top_p=0.9, # Nucleus sampling
top_k=50, # Top-k sampling
num_beams=1, # Beam search width
batch_size=1 # Batch size for processing
)
)
config = InferenceConfig(
resource=ResourceConfig(
gpu_memory_fraction=0.9, # GPU memory limit
cpu_usage_threshold=0.8, # CPU usage limit
max_parallel_requests=10 # Concurrent request limit
)
)
config = InferenceConfig(
cache=CacheConfig(
memory_size=1000, # Memory cache size (MB)
disk_size=10000, # Disk cache size (MB)
use_mmap=True # Use memory mapping
)
)
-
Resource Management
- Use context managers for resource optimization
- Monitor memory usage during heavy inference
- Clean up resources after use
-
Performance Optimization
- Batch similar requests when possible
- Use appropriate temperature settings
- Consider streaming for long responses
-
Error Handling
- Implement proper timeout handling
- Handle resource exhaustion gracefully
- Monitor inference performance
-
Model Settings
- Adjust temperature based on task needs
- Use appropriate max_length settings
- Consider beam search for quality vs speed
-
Out of Memory
- Reduce batch size
- Lower max_length
- Use resource management
-
Slow Response Times
- Enable batching
- Optimize model settings
- Monitor system resources
-
Quality Issues
- Adjust temperature/top_p
- Consider beam search
- Review prompt engineering