Skip to content

Latest commit

 

History

History
140 lines (107 loc) · 3.21 KB

Inference.md

File metadata and controls

140 lines (107 loc) · 3.21 KB

Inference Guide

Table of Contents

Overview

This document provides a comprehensive guide on how to use LlamaHome's inference capabilities effectively.

Basic Usage

The simplest way to run inference is using the InferencePipeline:

from src.inference import InferenceConfig, InferencePipeline

config = InferenceConfig(
    processing=ProcessingConfig(
        max_length=512,
        temperature=0.7,
        top_p=0.9
    )
)

pipeline = InferencePipeline("facebook/opt-1.3b", config)
response = await pipeline.generate("What is machine learning?")

Streaming Responses

For real-time responses, use the StreamingPipeline:

from src.inference import StreamingPipeline

pipeline = StreamingPipeline("facebook/opt-1.3b", config)
async for chunk in pipeline.generate_stream("Explain quantum computing"):
    print(chunk, end="", flush=True)

Batch Processing

Process multiple prompts efficiently:

prompts = [
    "What is Python?",
    "Explain databases",
    "How does the internet work?"
]

responses = await pipeline.generate_batch(prompts)

Configuration

Processing Settings

config = InferenceConfig(
    processing=ProcessingConfig(
        max_length=512,      # Maximum response length
        temperature=0.7,     # Randomness (0.0-1.0)
        top_p=0.9,          # Nucleus sampling
        top_k=50,           # Top-k sampling
        num_beams=1,        # Beam search width
        batch_size=1        # Batch size for processing
    )
)

Resource Management

config = InferenceConfig(
    resource=ResourceConfig(
        gpu_memory_fraction=0.9,    # GPU memory limit
        cpu_usage_threshold=0.8,    # CPU usage limit
        max_parallel_requests=10     # Concurrent request limit
    )
)

Cache Configuration

config = InferenceConfig(
    cache=CacheConfig(
        memory_size=1000,    # Memory cache size (MB)
        disk_size=10000,     # Disk cache size (MB)
        use_mmap=True        # Use memory mapping
    )
)

Best Practices

  1. Resource Management

    • Use context managers for resource optimization
    • Monitor memory usage during heavy inference
    • Clean up resources after use
  2. Performance Optimization

    • Batch similar requests when possible
    • Use appropriate temperature settings
    • Consider streaming for long responses
  3. Error Handling

    • Implement proper timeout handling
    • Handle resource exhaustion gracefully
    • Monitor inference performance
  4. Model Settings

    • Adjust temperature based on task needs
    • Use appropriate max_length settings
    • Consider beam search for quality vs speed

Common Issues

  1. Out of Memory

    • Reduce batch size
    • Lower max_length
    • Use resource management
  2. Slow Response Times

    • Enable batching
    • Optimize model settings
    • Monitor system resources
  3. Quality Issues

    • Adjust temperature/top_p
    • Consider beam search
    • Review prompt engineering