-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_examples.py
172 lines (131 loc) · 6.04 KB
/
generate_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
Inference code originally based on SSD-LM demo notebook, from [repo](https://github.com/xhan77/ssd-lm) and corresponding paper ((https://arxiv.org/abs/2210.17432))
"""
import os
import sys
import torch
import time
import json
from tqdm.auto import tqdm
from datetime import datetime
import random
sys.path.append('../inference')
from classifiers import load_formality_model, load_style_model, text_to_style, compute_style_loss
from inference_utils import get_setup, batched_controlled_paraphrase
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
if __name__ == '__main__':
random.seed(1234)
torch.manual_seed(1234)
INPUT_PATH = 'inputs.txt'
OUT_DIR = 'outputs'
NUM_INFERENCES_PER_INPUT = 4
TASK = 'informal' # 'style'
hparams = {
'size': 50,
'lr': 200, # 800
'total_t': 200,
'num_drift_steps': 3,
'use_sqrt_schedule': True,
'top_p': 0.8,
'temperature': 3.0,
'straight_through': False,
'use_actual': False,
'model_path': '../models/best_checkpoint/' # requires downloading model
}
(
args,
model,
tokenizer,
model_embedding_lut,
embedding_sum_layer,
timestep_layer,
ctr_embed_projection, # unused
) = get_setup(**hparams)
dtime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
task_folder = f"{OUT_DIR}/{dtime}_{hparams['lr']}"
os.makedirs(task_folder, exist_ok=False)
with open(os.path.join(task_folder, "hparams.json"), 'w') as f:
json.dump(hparams, f)
with open(os.path.join(task_folder, "args.txt"), 'w') as f:
json.dump(str(args), f)
if TASK in ['formal', 'informal']:
# Load formality guidance model
ctr_model, tokenizer, ctr_embeds, _ = load_formality_model()
args.optimizing_label_index = (
1 if TASK == 'formal' else 0
)
args.ctr_model = ctr_model
args.ctr_embeds = ctr_embeds
args.tokenizer = tokenizer
args.ctr_embeds = args.ctr_embeds.to(args.accelerator.device)
args.ctr_model.to(args.accelerator.device)
args.ctr_model.eval()
# Define a loss function to optimize that takes word embeddings and a sequence mask
args.loss_fn = lambda embeds, mask: -torch.nn.functional.log_softmax(
args.ctr_model(inputs_embeds=embeds, attention_mask=mask).logits, dim=-1
)[:, args.optimizing_label_index].sum()
elif TASK in ['style']:
args.optimizing_label_index = None
ctr_model, tokenizer, ctr_embeds = load_style_model()
args.ctr_model = ctr_model
args.tokenizer = tokenizer
args.ctr_embeds = ctr_embeds
args.ctr_embeds = args.ctr_embeds.to(args.accelerator.device)
args.ctr_model.to(args.accelerator.device)
args.ctr_model.eval()
target_style_examples = ['Mmmm...I think I agree.', 'Uh...I think you are doing that wrong.', 'Ok...sounds good.']
args.target_embeds = text_to_style(
model=args.ctr_model,
tokenizer=args.tokenizer,
texts=target_style_examples,
device=args.accelerator.device,
model_type='style',
)
def style_loss(embeds, mask):
# To do: move set up batching inside of loss function
loss = 0
for e, m in zip(embeds, mask):
loss += compute_style_loss(
e.unsqueeze(0),
model=args.ctr_model,
target_embeds=args.target_embeds,
attention_mask=m.float().unsqueeze(0),
model_type='style',
)
return loss
args.loss_fn = style_loss
else:
raise ValueError(f"Unknown task: {TASK}")
# load AR paraphraser
paraphraser_tokenizer = PegasusTokenizer.from_pretrained('tuner007/pegasus_paraphrase')
paraphraser_model = PegasusForConditionalGeneration.from_pretrained('tuner007/pegasus_paraphrase').to(args.accelerator.device)
with open(INPUT_PATH, 'r') as f:
input_data = [l.strip() for l in f.readlines()]
total_transfers = len(input_data)
with open(os.path.join(task_folder, f"{TASK}.jsonl"), 'w+') as out:
with tqdm(total=total_transfers) as pbar:
for original_text in input_data:
start = time.time()
# Skip paraphrasing if using actual text
if args.use_actual:
input = original_text
paraphrase = ''
print(f'Using actual: {original_text}')
# Otherwise, first paraphrase the input
else:
encoded = paraphraser_tokenizer([original_text], return_tensors='pt').to(args.accelerator.device)
paraphrase = paraphraser_model.generate(**encoded, max_length=50, do_sample=True, top_p=0.8, temperature=1.5)
paraphrase = paraphraser_tokenizer.batch_decode(paraphrase, skip_special_tokens=True)[0]
input = paraphrase
print(f'Paraphrased: {original_text} -> {input}')
outputs = batched_controlled_paraphrase([input]*NUM_INFERENCES_PER_INPUT, num_samples=1, args=args, model=model, tokenizer=tokenizer, model_embedding_lut=model_embedding_lut, embedding_sum_layer=embedding_sum_layer, timestep_layer=timestep_layer, ctr_embed_projection=None, batch_ctrl_embeds=None, logging=False)
result = dict(
input_label=INPUT_PATH,
paraphrase=paraphrase,
original_text=original_text,
target_label=TASK,
decoded=outputs)
print(f'{original_text} -> {paraphrase} ->' + "\n\t->" + "\n\t->".join(outputs[0]))
out.write(json.dumps(result) + '\n')
print('Elapsed:',time.time() - start)
pbar.update(1)