""" Batch testing =============== Goldthorpe This module will perform all of the testing and analysis for optimisation passes. """ import argparse import multiprocessing import os import utils.printing from ui.diff import DiffUI from ui.fuzz import FuzzUI from ui.interpreter import InterpreterUI from ui.multi import MultiUI from ui.printer import PrinterUI from ui.reader import ReaderUI from ui.stats import StatUI from ui.testfiles import TestFileUI from ui.opter import OptUI from ui.writer import WriterUI import ui.fuzz import ui.stats def batch_opt(tfmanager, multi, opter, *, meta=True, fresh=False): """ This function is responsible for generating the optimised code files. """ opt = ''.join(','.join(opter.opts_cl).split()) # target process function def run_opt(test): PrinterUI(can_format=False, debug=True) reader = ReaderUI(fname=tfmanager.get_test_ami(test)) writer = WriterUI(meta=meta, frame=None, fname=tfmanager.get_test_opt(test, opt)) # parse reader.fetch_input() cfg = reader.build_cfg() # optimise opter.load_cfg(cfg) opter.execute_passes() # write writer.write(opter.CFG) # set up processes for test in tfmanager.tests: if opt in tfmanager.get_test_opts(test) and not fresh: continue multi.prepare_process( tfmanager.get_test_opt(test, opt), target=run_opt, args=(test,), stderr=tfmanager.get_test_opt_log(test, opt)) return multi.execute() def batch_fuzz_ami(tfmanager, multi, fuzz, *, num): """ This function is responsible for generating ami source fuzz. """ def build_fuzz(fname): PrinterUI(can_format=False, debug=False) writer = WriterUI(meta=False, frame=None, fname=fname) writer.write(fuzz.generate()) for _ in range(num): fname = tfmanager.new_fuzz_ami() multi.prepare_process( fname, target=build_fuzz, args=(fname,)) return multi.execute() def batch_fuzz_input(tfmanager, multi, *, num, intmin, intmax): """ This function is responsible for generating input fuzz. Also produces the corresponding trace for the input. """ def say_and_write(fname): PrinterUI(can_format=False, debug=True) reader = ReaderUI(fname=fname) interpreter = InterpreterUI(prompt=False, trace=True, brkpts=False, interrupt="never") # parse reader.fetch_input() cfg = reader.build_cfg() # run interpreter.load_cfg(cfg) interpreter.run() for test in tfmanager.tests: for _ in range(num): inf = tfmanager.new_fuzz_input(test) outf = tfmanager.get_test_corresponding_output(test, inf) infile = tfmanager.get_test_input_fpath(test, inf) multi.prepare_process( tfmanager.get_test_output_fpath(test, outf), target=say_and_write, args=(tfmanager.get_test_ami(test),), stdin=ui.fuzz.FuzzWriter(infile, intmin, intmax), stdout=tfmanager.get_test_output_fpath(test, outf), stderr=tfmanager.get_test_corresponding_trace_fpath(test, inf)) return multi.execute() def batch_run(tfmanager, multi): """ This function is responsible for generating the necessary output files. """ # target process function def simulate(fname): PrinterUI(can_format=False, debug=True) reader = ReaderUI(fname=fname) interpreter = InterpreterUI(prompt=False, trace=True, brkpts=False, interrupt="never") # parse reader.fetch_input() cfg = reader.build_cfg() # run interpreter.load_cfg(cfg) interpreter.run() # set up processes for test in tfmanager.tests: for inf in tfmanager.get_test_input_files(test): outf = tfmanager.get_test_corresponding_output(test, inf) if outf not in tfmanager.get_test_output_files(test): multi.prepare_process( tfmanager.get_test_output_fpath(test, outf), target=simulate, args=(tfmanager.get_test_ami(test),), stdin=tfmanager.get_test_input_fpath(test, inf), stdout=tfmanager.get_test_output_fpath(test, outf), stderr=tfmanager.get_test_corresponding_trace_fpath(test, inf)) for opt in tfmanager.get_test_opts(test): if outf not in tfmanager.get_test_opt_output_files(test, opt): multi.prepare_process( tfmanager.get_test_opt_output_fpath(test, opt, outf), target=simulate, args=(tfmanager.get_test_opt(test, opt),), stdin=tfmanager.get_test_input_fpath(test, inf), stdout=tfmanager.get_test_opt_output_fpath(test, opt, outf), stderr=tfmanager.get_test_opt_corresponding_trace_fpath(test, opt, inf)) return multi.execute() def batch_diff(tfmanager, multi): """ Compare optimised outputs with original for inconsistencies. """ # target process function def run_diff(file1, file2): PrinterUI(can_format=False, debug=False) diff = DiffUI(fullcontent=True) diff.read_files(file1, file2) diff.display_diff() exit(diff.files_differ) # set up processes for test in tfmanager.tests: for opt in tfmanager.get_test_opts(test): for outf in tfmanager.get_test_output_files(test): diff = tfmanager.get_test_opt_corresponding_diff_fpath(test, opt, outf) if os.path.exists(diff): continue multi.prepare_process( diff, target=run_diff, args=(tfmanager.get_test_output_fpath(test, outf), tfmanager.get_test_opt_output_fpath(test, opt, outf)), stdout=tfmanager.get_test_opt_corresponding_diff_fpath(test, opt, outf)) return multi.execute() def run_code_stats(tfmanager, multi, stats, *, ref): print("Code report") print() print("Stats:") print("I: number of instructions in the code") print("B: number of basic blocks in the code") print("V: number of distinct registers") print("phi: number of phi nodes") print() # collect optimisations and stats code_stats = {} def save_code_stats(src): reader = ReaderUI(src) reader.fetch_input() cfg = reader.build_cfg() code_stats[src] = ui.stats.get_cfg_stats(cfg) optset = set() for test in tfmanager.tests: save_code_stats(tfmanager.get_test_ami(test)) for opt in tfmanager.get_test_opts(test): optset.add(opt) save_code_stats(tfmanager.get_test_opt(test, opt)) nickname = ui.stats.name_compressor(optset) if ref != '-': if ref in nickname: ref = nickname[ref] elif ref not in nickname.values(): utils.printing.perror(f"{ref} is not a valid baseline.") utils.printing.perror("The valid baselines are:\n\t-") for opt, nick in nickname.items(): utils.printing.perror(f"\t{opt} or \"{nick}\"") exit(1) nlen = max(len(nick) for opt, nick in nickname.items()) print("Optimisations:") for opt, nick in sorted(nickname.items(), key=lambda t: t[1]): print(f"{nick: >{nlen}}", "->", opt) print() print('='*max(len(test) for test in tfmanager.tests)) print() # now, build report for test in tfmanager.tests: print(test, '-'*len(test), sep='\n') subjects = { ref : tfmanager.get_test_ami(test) } for opt in tfmanager.get_test_opts(test): subjects[nickname[opt]] = tfmanager.get_test_opt(test, opt) paramlist = ( ("I", "num_instructions"), ("B", "num_blocks"), ("V", "num_vars"), ("phi", "num_phi")) data = {key:{} for key, _ in paramlist} if ref == '-': for key, param in paramlist: data[key][ref] = code_stats[tfmanager.get_test_ami(test)][param] for opt in tfmanager.get_test_opts(test): for key, param in paramlist: data[key][nickname[opt]] = code_stats[ tfmanager.get_test_opt(test, opt)][param] stats.print_data(header="stat", data=data, paramlist=[key for key, _ in paramlist], ref=ref, flip=True # the smaller, the better ) print() def run_trace_stats(tfmanager, multi, stats, *, ref): print("Trace report") print() print("Stats: (per test input)") print("I: number of instructions executed") print("BB: number of basic blocks visited") print("br: number of conditional branches") print() # collect optimisations and stats trace_stats = {} def save_trace_stats(src): try: with open(src) as file: trace_stats[src] = ui.stats.get_trace_stats(file.read()) return True except FileNotFoundError: utils.debug.print("run_trace", f"{src} does not exist.") return False optset = set() for test in tfmanager.tests: for opt in tfmanager.get_test_opts(test): optset.add(opt) for inf in tfmanager.get_test_input_files(test): save_trace_stats( tfmanager.get_test_corresponding_trace_fpath(test, inf)) save_trace_stats( tfmanager.get_test_opt_corresponding_trace_fpath(test, opt, inf)) nickname = ui.stats.name_compressor(optset) if ref != '-': if ref in nickname: ref = nickname[ref] elif ref not in nickname.values(): utils.printing.perror(f"{ref} is not a valid baseline.") utils.printing.perror("The valid baselines are:\n\t-") for opt, nick in nickname.items(): utils.printing.perror(f"\t{opt} or \"{nick}\"") exit(1) nlen = max(len(nick) for opt, nick in nickname.items()) print("Optimisations:") for opt, nick in sorted(nickname.items(), key=lambda t: t[1]): print(f"{nick: >{nlen}}", "->", opt) print() print('='*max(len(test) for test in tfmanager.tests)) print() # now, build report for test in tfmanager.tests: if any(tfmanager.get_test_corresponding_trace_fpath( test, inf) not in trace_stats for inf in tfmanager.get_test_input_files(test)): continue print(test, '-'*len(test), sep='\n') paramlist = sum(([ (f"{inf}/I", inf, "num_instructions"), (f"{inf}/BB", inf, "num_blocks"), (f"{inf}/br", inf, "num_branches") ] for inf in tfmanager.get_test_input_files(test)), start=[]) data = {key:{} for key, _, _ in paramlist} if ref == "-": for key, inf, param in paramlist: data[key][ref] = trace_stats[ tfmanager.get_test_corresponding_trace_fpath( test, inf)][param] for opt in tfmanager.get_test_opts(test): if any(tfmanager.get_test_opt_corresponding_trace_fpath( test, opt, inf) not in trace_stats for inf in tfmanager.get_test_input_files(test)): continue for key, inf, param in paramlist: data[key][nickname[opt]] = trace_stats[ tfmanager.get_test_opt_corresponding_trace_fpath( test, opt, inf)][param] stats.print_data(header="input", data=data, paramlist=[key for key, _, _ in paramlist], ref=ref, flip=True # the smaller, the better ) print() if __name__ == "__main__": ### command-line argument handling ### argparser = argparse.ArgumentParser( description="All-purpose optimisation tester and analyser.") PrinterUI.add_arguments(argparser.add_argument_group("formatting")) MultiUI.add_arguments(argparser.add_argument_group("multiprocessing")) TestFileUI.add_arguments(argparser.add_argument_group("file management")) subparsers = argparser.add_subparsers(title="test types", dest="type") ### opt arguments ### opt_parser = subparsers.add_parser("opt", description="Apply optimisation passes to code suite.", help="Pass optimisations.") OptUI.add_arguments(opt_parser) opt_parser.add_argument("-f", "--file", dest="opt_file", metavar="FILE", help="Run each program through several optimisation pipelines, where each pipeline is given by a line of space-separated passes in the specified file.") opt_parser.add_argument("-m", "--keep-metadata", dest="meta", action="store_true", help="Write metadata to optimised output code.") opt_parser.add_argument("--fresh", dest="fresh_opt", action="store_true", help="Do a clean rebuild, and overwrite already existing files for this optimisation.") ### fuzz arguments ### fuzz_parser = subparsers.add_parser("fuzz", description="A-Mi fuzzer", help="Generate more code or inputs.") fuzz_sub = fuzz_parser.add_subparsers(title="fuzz types", dest="fuzz_type") fuzz_ami = fuzz_sub.add_parser("ami", description="A-Mi source fuzzer", help="Generate more A-Mi source code.") fuzz_input = fuzz_sub.add_parser("input", description="A-Mi input fuzzer", help="Generate input to existing A-Mi code.") FuzzUI.add_arguments(fuzz_ami) fuzz_ami.add_argument("-n", "--num", dest="fuzz_ami_num", type=int, default=32, metavar="NUM", help="The number of new programs to generate (default: 32).") fuzz_input.add_argument("-n", "--num", dest="fuzz_input_num", type=int, default=8, metavar="NUM", help="The number of new inputs to generate per program (default: 8).") fuzz_input.add_argument("--min", dest="fuzz_input_min", type=int, default=-64, metavar="NUM", help="The minimum integer that may be generated for a program input (default: -64).") fuzz_input.add_argument("--max", dest="fuzz_input_max", type=int, default=64, metavar="NUM", help="The maximum integer that may be generated for a program input (default: 64).") ### run arguments ### run_parser = subparsers.add_parser("run", description="Generate output for corresponding inputs.", help="Run code with provided inputs.") ### diff arguments ### diff_parser = subparsers.add_parser("diff", description="Produce diff between two files.", help="Diff two files.") diff_parser.add_argument("file1", metavar="FILE", help="First file of diff.") diff_parser.add_argument("file2", metavar="FILE", help="Second file of diff.") DiffUI.add_arguments(diff_parser) ### stats arguments ### stats_parser = subparsers.add_parser("stats", description="Test statistics.", help="Get statistics report for specified subtree(s).") StatUI.add_arguments(stats_parser) stats_parser.add_argument("stat", choices=("code", "trace"), help="Specify which statistics to report on.") stats_parser.add_argument("--baseline", dest="ref", metavar="OPT", default="-", help="Specify an optimisation to serve as the baseline for the remaining data (or use \"-\" to refer to the original source code).") args = argparser.parse_args() PrinterUI.arg_init(args) multi = MultiUI.arg_init(args) tfmanager = TestFileUI.arg_init(args) tfmanager.verify_folder_integrity() tfmanager.delete_outdated() match args.type: case "opt": if args.opt_file is not None: try: with open(args.opt_file, 'r') as opt_file: passlines = [OptUI.parse_pipeline(line) for line in opt_file.readlines() if len(line.strip()) > 0] except FileNotFoundError: utils.printing.perror(f"Opt file {args.opt_file} does not exist.") exit(99) else: passlines = [[]] for line in passlines: opter = OptUI.arg_init(args) for Pass, pargs, pkwargs in line: opter.append_pass(Pass, pargs, pkwargs) utils.printing.phidden(f"batch_opt :: {', '.join(opter.opts_cl)}") res = batch_opt(tfmanager, multi, opter, meta=args.meta, fresh=args.fresh_opt) if any(ec for _, ec in res.items()): exit(99) case "fuzz": match args.fuzz_type: case "ami": fuzz = FuzzUI.arg_init(args) batch_fuzz_ami(tfmanager, multi, fuzz, num=args.fuzz_ami_num) case "input": batch_fuzz_input(tfmanager, multi, num=args.fuzz_input_num, intmin=args.fuzz_input_min, intmax=args.fuzz_input_max) case "run": utils.printing.phidden("batch_run :: updating output files") res = batch_run(tfmanager, multi) if any(ec for _, ec in res.items()): exit(99) utils.printing.phidden("batch_diff :: checking output file correctnesss") tfmanager.rescan() # process newly-created files dres = batch_diff(tfmanager, multi) if any(ec for _, ec in dres.items()): exit(99) case "diff": diff = DiffUI.arg_init(args) diff.read_files(args.file1, args.file2) diff.display_diff() exit(diff.files_differ) case "stats": stats = StatUI.arg_init(args) if args.stat == "code": run_code_stats(tfmanager, multi, stats, ref=args.ref) else: run_trace_stats(tfmanager, multi, stats, ref=args.ref)