-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathfunc.py
118 lines (97 loc) · 2.9 KB
/
func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import pandas as pd
# 移动求和
def ts_sum(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).sum()
# 移动平均
def ts_mean(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).mean()
# 标准差
def stddev(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).std()
# 相关系数
def correlation(se_x, se_y, window=10):
if not isinstance(se_x, pd.Series):
se_x = pd.Series(se_x)
if not isinstance(se_y, pd.Series):
se_y = pd.Series(se_y)
return se_x.rolling(window).corr(se_y)
# 协方差
def covariance(se_x, se_y, window=10):
if not isinstance(se_x, pd.Series):
se_x = pd.Series(se_x)
if not isinstance(se_y, pd.Series):
se_y = pd.Series(se_y)
return se_x.rolling(window).cov(se_y)
def rolling_rank(se):
return rankdata(se)[-1]
# 移动排序
def ts_rank(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).apply(self.rolling_rank)
def rolling_prod(se):
return se.prod(se)
def product(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).apply(self.rolling_prod)
# 移动窗口最小值
def ts_min(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).min()
# 最大值
def ts_max(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).max()
# delta
def delta(se, period=1):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.diff(period)
# shift
def delay(se, period=1):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.shift(period)
# 排序
def rank(se):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rank(axis=1, pct=True)
def scale(se, k=1):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.mul(k).div(np.abs(se).sum())
def ts_argmax(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).apply(np.argmax) + 1
def ts_argmin(se, window=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return se.rolling(window).apply(np.argmin) + 1
def decay_linear(se, period=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return ta.WMA(se.values, period)
# 斜率
def slope(se, period=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return ta.LINEARREG_SLOPE(se.values, period)
def atr(df):
if not isinstance(df, pd.DataFrame):
df = pd.Series(df)
return ta.abstract.ATR(df)
def momentum(se, period=10):
if not isinstance(se, pd.Series):
se = pd.Series(se)
return ta.ROCP(se.values, period)