-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_reconstruct_img.py
234 lines (189 loc) · 9.34 KB
/
main_reconstruct_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import torch
import numpy as np
import json
import logging
from util import utils
from datasets.CameraPoseDataset import CameraPoseDataset
from os.path import join
from models.pose_encoder import PoseEncoder, MultiSCenePoseEncoder
import torch.nn as nn
import matplotlib.pyplot as plt
class Decoder(torch.nn.Module):
def __init__(self, dim, img_size):
"""
:param config: (dict) configuration to determine behavior
"""
super(Decoder, self).__init__()
dim = dim*2
self.img_size = img_size
self.decoder = torch.nn.Sequential(nn.Linear(dim,512),
nn.ReLU(),
nn.Linear(512, 1024),
nn.ReLU(),
nn.Linear(1024, 2048),
nn.ReLU(),
nn.Linear(2048, self.img_size*self.img_size*3),
nn.Sigmoid()
)
self._reset_params()
def _reset_params(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, latent):
batch_size = latent.shape[0]
out = self.decoder(latent)
return out.reshape((batch_size, 3, self.img_size, self.img_size))
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("mode", help="train or demo")
arg_parser.add_argument("dataset_path", help="path to the physical location of the dataset")
arg_parser.add_argument("labels_file", help="path to a file mapping images to their poses")
arg_parser.add_argument("config_file", help="path to configuration file")
arg_parser.add_argument("encoder_checkpoint_path", help="path to a trained pose encoder")
arg_parser.add_argument("--decoder_checkpoint_path", help="path to apr refiner component")
arg_parser.add_argument("--experiment", help="a short string to describe the experiment/commit used")
args = arg_parser.parse_args()
utils.init_logger()
# Record execution details
logging.info("Start {} image reconstruction from encoding".format(args.mode))
if args.experiment is not None:
logging.info("Experiment details: {}".format(args.experiment))
logging.info("Using dataset: {}".format(args.dataset_path))
logging.info("Using labels file: {}".format(args.labels_file))
# Read configuration
with open(args.config_file, "r") as read_file:
config = json.load(read_file)
model_params = config['decoder']
general_params = config['general']
config = {**model_params, **general_params}
logging.info("Running with configuration:\n{}".format(
'\n'.join(["\t{}: {}".format(k, v) for k, v in config.items()])))
# Set the seeds and the device
use_cuda = torch.cuda.is_available()
device_id = 'cpu'
torch_seed = 0
numpy_seed = 2
torch.manual_seed(torch_seed)
if use_cuda:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device_id = config.get('device_id')
np.random.seed(numpy_seed)
device = torch.device(device_id)
is_single_scene = config.get("single_scene")
if is_single_scene:
pose_encoder = PoseEncoder(config.get("hidden_dim")).to(device)
else:
pose_encoder = MultiSCenePoseEncoder(config.get("hidden_dim")).to(device)
pose_encoder.load_state_dict(torch.load(args.encoder_checkpoint_path, map_location=device_id))
logging.info("Initializing encoder from checkpoint: {}".format(args.encoder_checkpoint_path))
pose_encoder.eval()
img_size = config.get("img_size")
decoder = Decoder(config.get("hidden_dim"), img_size).to(device)
if args.decoder_checkpoint_path is not None:
decoder.load_state_dict(torch.load(args.decoder_checkpoint_path, map_location=device_id))
logging.info("Initializing encoder from checkpoint: {}".format(args.decoder_checkpoint_path))
transform = utils.get_base_transform(img_size)
if args.mode == 'train':
# Set to train mode
decoder.train()
# Set the losses
l1_loss = torch.nn.L1Loss().to(device)
# Set the optimizer and scheduler
optim = torch.optim.Adam(decoder.parameters(),
lr=config.get('lr'), eps=config.get("eps"), weight_decay=0.0)
scheduler = torch.optim.lr_scheduler.StepLR(optim,
step_size=config.get('lr_scheduler_step_size'),
gamma=config.get('lr_scheduler_gamma'))
dataset = CameraPoseDataset(args.dataset_path, args.labels_file, transform, False)
loader_params = {'batch_size': config.get('batch_size'),
'shuffle': True,
'num_workers': config.get('n_workers')}
dataloader = torch.utils.data.DataLoader(dataset, **loader_params)
# Get training details
n_freq_print = config.get("n_freq_print")
n_freq_checkpoint = config.get("n_freq_checkpoint")
n_epochs = config.get("n_epochs")
# Train
checkpoint_prefix = join(utils.create_output_dir('out'),utils.get_stamp_from_log())
n_total_samples = 0.0
loss_vals = []
sample_count = []
debug_display = False
for epoch in range(n_epochs):
# Resetting temporal loss used for logging
running_loss = 0.09
n_samples = 0
for batch_idx, minibatch in enumerate(dataloader):
for k, v in minibatch.items():
minibatch[k] = v.to(device)
gt_pose = minibatch.get('pose').to(dtype=torch.float32)
gt_scene = minibatch.get('scene').to(device).to(dtype=torch.float32).unsqueeze(1)
img = minibatch.get('img').to(device)
minibatch['scene'] = None
batch_size = gt_pose.shape[0]
n_samples += batch_size
n_total_samples += batch_size
# Zero the gradients
optim.zero_grad()
with torch.no_grad():
if not is_single_scene:
latent_x, latent_q = pose_encoder(gt_pose, gt_scene)
else:
latent_x, latent_q = pose_encoder(gt_pose)
rec_img = decoder(torch.cat((latent_x, latent_q), dim=1))
criterion = l1_loss(rec_img, img)
# Collect for recoding and plotting
running_loss += criterion.item()
loss_vals.append(criterion.item())
sample_count.append(n_total_samples)
# Back prop
criterion.backward()
optim.step()
# Record loss and performance on train set
if batch_idx % n_freq_print == 0:
logging.info("[Batch-{}/Epoch-{}] running MSE loss: {:.3f}".format(
batch_idx+1, epoch+1, (running_loss/n_samples)))
if debug_display:
rec_np_img = rec_img.detach().cpu()[0].squeeze(0).permute((1,2,0)).numpy() * 255.0
plt.imshow(rec_np_img.astype(np.int32))
plt.show()
np_img = img.detach().cpu()[0].squeeze(0).permute((1,2,0)).numpy() * 255.0
plt.imshow(np_img.astype(np.int32))
plt.show()
# Save checkpoint
if (epoch % n_freq_checkpoint) == 0 and epoch > 0:
torch.save(decoder.state_dict(), checkpoint_prefix + '_decoder_checkpoint-{}.pth'.format(epoch))
# Scheduler update
scheduler.step()
logging.info('Training completed')
torch.save(decoder.state_dict(), checkpoint_prefix + '_decoder_final.pth'.format(epoch))
else: # Demo
# Set to eval mode
decoder.eval()
# Set the dataset and data loader
dataset = CameraPoseDataset(args.dataset_path, args.labels_file, transform)
#indices = [10,200] # heads
indices = [1, 6] # shop facade
with torch.no_grad():
for i in indices:
sample = dataset[i]
scene = torch.Tensor([sample.get('scene')]).to(device).to(dtype=torch.float32).unsqueeze(1)
pose = torch.Tensor(sample.get('pose')).to(dtype=torch.float32).to(device).unsqueeze(0)
img = sample.get('img')
if not is_single_scene:
latent_x, latent_q = pose_encoder(pose, scene)
else:
latent_x, latent_q = pose_encoder(pose)
rec_img = decoder(torch.cat((latent_x, latent_q), dim=1))
# plot here img vs rec_img
rec_np_img = rec_img.cpu()[0].squeeze(0).permute((1, 2, 0)).numpy() * 255.0
plt.imshow(rec_np_img.astype(np.int32))
#plt.show()
plt.savefig("{}_recon.png".format(i))
np_img = img.permute((1, 2, 0)).numpy() * 255.0
plt.imshow(np_img.astype(np.int32))
#plt.show()
plt.savefig("{}_orig.png".format(i))