-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathPSI_algorithm.m
505 lines (499 loc) · 18.7 KB
/
PSI_algorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
%% Data preparation: Burgers
clear;close all;clc
load('./Datasets/BurgersNN_N10.mat')
load('./Datasets/BurgersMATLAB_N0.mat')
un = reshape(u_pred,[],length(t));
un = un';
clear u u_pred
dt = t(2)-t(1);
dx = x(2)-x(1);
U_dxn=differfitx(un,[-15:1:15],dx,8,4);U_dtn=differfitx(un.',[-15:1:15],dt,8,2);
U=U_dxn(:,:,1);U2=U.^2;U3=U.^3;Ut1=U_dtn(:,:,2).';Ut2=U_dtn(:,:,3).';
Ux1=U_dxn(:,:,2);Ux2=U_dxn(:,:,3);Ux3=U_dxn(:,:,4);Ux4=U_dxn(:,:,5);
UUx1=U.*Ux1;U2Ux1=U.*U.*Ux1;U3Ux1=U.^3.*Ux1;
UUx2=U.*Ux2;U2Ux2=U.*U.*Ux2;U3Ux2=U.^3.*Ux2;
UUx3=U.*Ux3;U2Ux3=U.*U.*Ux3;U3Ux3=U.^3.*Ux3;
UUx4=U.*Ux4;U2Ux4=U.*U.*Ux4;U3Ux4=U.^3.*Ux4;
A=[f(U),f(U2),f(U3),f(Ux1),f(UUx1),f(U2Ux1),f(U3Ux1),f(Ux2),f(UUx2),f(U2Ux2),...
f(U3Ux2),f(Ux3),f(UUx3),f(U2Ux3),f(U3Ux3)];
A=[ones(size(A,1),1),A];
b=f(Ut1);
A=[real(A);imag(A)];b=[real(b);imag(b)];
% save('./Datasets/BurgersMATLAB_N10_FFT.mat','A','b')
%% Data preparation: KdV
clear;close all;clc
load('./Datasets/KdVNN_N20.mat')
load('./Datasets/KdV.mat')
t = tt;
un = reshape(u_pred,[],length(t));
un = un';
clear uu tt u_pred
dt = t(2)-t(1);
dx = x(2)-x(1);
U_dxn=differfitx(un,[-15:1:15],dx,6,4);U_dtn=differfitx(un.',[-15:1:15],dt,6,2);
U=U_dxn(:,:,1);U2=U.^2;U3=U.^3;Ut1=U_dtn(:,:,2).';Ut2=U_dtn(:,:,3).';
Ux1=U_dxn(:,:,2);Ux2=U_dxn(:,:,3);Ux3=U_dxn(:,:,4);Ux4=U_dxn(:,:,5);
UUx1=U.*Ux1;U2Ux1=U.*U.*Ux1;U3Ux1=U.^3.*Ux1;
UUx2=U.*Ux2;U2Ux2=U.*U.*Ux2;U3Ux2=U.^3.*Ux2;
UUx3=U.*Ux3;U2Ux3=U.*U.*Ux3;U3Ux3=U.^3.*Ux3;
UUx4=U.*Ux4;U2Ux4=U.*U.*Ux4;U3Ux4=U.^3.*Ux4;
A=[f(U),f(U2),f(U3),f(Ux1),f(UUx1),f(U2Ux1),f(U3Ux1),f(Ux2),f(UUx2),f(U2Ux2),...
f(U3Ux2),f(Ux3),f(UUx3),f(U2Ux3),f(U3Ux3),f(Ux4),f(UUx4),f(U2Ux4),f(U3Ux4)];
A=[ones(size(A,1),1),A];
b=f(Ut1);
A=[real(A);imag(A)];b=[real(b);imag(b)];
% save('./Datasets/KdVMATLAB_N20_FFT.mat','A','b')
%% Data preparation: Burgers2D
clear;close all;clc
load('./Datasets/Burgers2D.mat','t','x','y')
load('./Datasets/Burgers2DNN_N40.mat')
m1 = length(x);
m2 = length(y);
m3 = length(t);
u = zeros(m3,m2,m1);
ind = 0;
for i = 1:m3
for j = 1:m2
for k = 1:m1
ind = ind+1;
u(i,j,k) = u_pred(ind);
end
end
end
clearvars -except u t x y
dt = t(2)-t(1);
dx = x(2)-x(1);
dy = y(2)-y(1);
form1=-2:2;form2=-3:3;
un = u;
U=un;U2=U.*U;U3=U2.*U;
Ut1=differ3(un,form1,1,1)/dt;Ut2=differ3(un,form1,1,2)/dt^2;
Ux1=differ3(un,form1,3,1)/dx;Ux2=differ3(un,form1,3,2)/dx^2;Ux3=differ3(un,form2,3,3)/dx^3;
Uy1=differ3(un,form1,2,1)/dy;Uy2=differ3(un,form1,2,2)/dy^2;Uy3=differ3(un,form2,2,3)/dy^3;
UUx1=U.*Ux1;U2Ux1=U.*U.*Ux1;U3Ux1=U3.*Ux1;
UUx2=U.*Ux2;U2Ux2=U.*U.*Ux2;U3Ux2=U3.*Ux2;
UUx3=U.*Ux3;U2Ux3=U.*U.*Ux3;U3Ux3=U3.*Ux3;
UUy1=U.*Uy1;U2Uy1=U.*U.*Uy1;U3Uy1=U3.*Uy1;
UUy2=U.*Uy2;U2Uy2=U.*U.*Uy2;U3Uy2=U3.*Uy2;
UUy3=U.*Uy3;U2Uy3=U.*U.*Uy3;U3Uy3=U3.*Uy3;
A=[fn(U),fn(U2),fn(U3),fn(Ux1+Uy1),fn(UUx1+UUy1),fn(U2Ux1+U2Uy1),fn(U3Ux1+U3Uy1),...
fn(Ux2+Uy2),fn(UUx2+UUy2),fn(U2Ux2+U2Uy2),fn(U3Ux2+U3Uy2),...
fn(Ux3+Uy3),fn(UUx3+UUy3),fn(U2Ux3+U2Uy3),fn(U3Ux3+U3Uy3)];
A=[ones(size(A,1),1),A];
b=fn(Ut1);
A=[real(A);imag(A)];b=[real(b);imag(b)];
% save('./Datasets/Burgers2D_N40_FFT.mat','A','b')
%% Data preparation: Navier Stokes: lid-driven cavity
clear;close all;clc
load('./Datasets/NS_N0.mat','t','x','y')
load('./Datasets/v_NS_NN_N50.mat')
v_pred = double(u_pred);
clear u_pred;
load('./Datasets/p_NS_NN_N50.mat')
p_pred = double(u_pred);
clear u_pred;
load('./Datasets/u_NS_NN_N50.mat')
u_pred = double(u_pred);
t = t(1:100)';
x = x';
x = (x(2:end-2)+x(3:end-1))/2;
y = y';
y = (y(2:end-2)+y(3:end-1))/2;
m1 = length(x);
m2 = length(y);
m3 = length(t);
u = zeros(m3,m1,m2);
ind = 0;
for i = 1:m3
for j = 1:m1
for k = 1:m2
ind = ind+1;
u(i,j,k) = u_pred(ind);
v(i,j,k) = v_pred(ind);
p(i,j,k) = p_pred(ind);
end
end
end
clearvars -except u v p t x y
dt = t(2)-t(1);
dx = x(2)-x(1);
dy = y(2)-y(1);
u = permute(u,[1 3 2]);
v = permute(v,[1 3 2]);
p = permute(p,[1 3 2]);
form1=-2:2;form2=-3:3;
U=u;U2=U.*U;U3=U2.*U;
Ut1=differ3(u,form1,1,1)/dt;Ut2=differ3(u,form1,1,2)/dt^2;
V=v;V2=V.*V;V3=V2.*V;
Vt1=differ3(v,form1,1,1)/dt;Vt2=differ3(v,form1,1,2)/dt^2;
Px1=differ3(p,form1,3,1)/dx;Px2=differ3(p,form1,3,2)/dx^2;
Py1=differ3(p,form1,2,1)/dy;Py2=differ3(p,form1,2,2)/dy^2;
Ux1=differ3(u,form1,3,1)/dx;Ux2=differ3(u,form1,3,2)/dx^2;Ux3=differ3(u,form2,3,3)/dx^3;
Uy1=differ3(u,form1,2,1)/dy;Uy2=differ3(u,form1,2,2)/dy^2;Uy3=differ3(u,form2,2,3)/dy^3;
Vx1=differ3(v,form1,3,1)/dx;Vx2=differ3(v,form1,3,2)/dx^2;Vx3=differ3(v,form2,3,3)/dx^3;
Vy1=differ3(v,form1,2,1)/dy;Vy2=differ3(v,form1,2,2)/dy^2;Vy3=differ3(v,form2,2,3)/dy^3;
A=[fn(Px1),fn(Py1),fn(Ux1+Uy1),fn(Vx1+Vy1),fn(U.*Ux1+V.*Uy1),fn(U.*Vx1+V.*Vy1),fn(U2.*Ux1+V2.*Uy1),fn(U2.*Vx1+V2.*Vy1)...
fn(Ux2+Uy2),fn(Vx2+Vy2),fn(U.*Ux2+V.*Uy2),fn(U.*Vx2+V.*Vy2),fn(U2.*Ux2+V2.*Uy2),fn(U2.*Vx2+V2.*Vy2)...
fn(Ux3+Uy3),fn(Vx3+Vy3),fn(U.*Ux3+V.*Uy3),fn(U.*Vx3+V.*Vy3),fn(U2.*Ux3+V2.*Uy3),fn(U2.*Vx3+V2.*Vy3)];
b1=fn(Ut1);
b2=fn(Vt1);
A=[real(A);imag(A)];
b1=[real(b1);imag(b1)];
b2=[real(b2);imag(b2)];
% save('./Datasets/NS_N50_FFT.mat','A','b1','b2')
%% Aanalysis via train-validation
clear;close all;clc
load('./Datasets/BurgersMATLAB_N0_FFT.mat')
% load('./Datasets/KdVMATLAB_N0_FFT.mat')
% load('./Datasets/Burgers2D_N0_FFT.mat')
% load('./Datasets/NS_N0_FFT.mat');b = b1;
% normlize the data
normA = vecnorm(A,2);
A = A./normA;
normb = vecnorm(b,2);
b = b./normb;
% find the most contributive terms by cross validation
valR = 0.2; % ratio of validation data
numVals = 10000; % number of cross validations
indL = 1:size(A,2); % initial indices
errRec = zeros(numVals,size(A,2)+1);
errBIC = zeros(numVals,size(A,2)+1);
for i = 1:numVals
rng(i); % assign rand seeds for this validation
% separate data into training and validation sets
valInd = randperm(length(b),round(valR*length(b)));
valInd = sort(valInd);
trnInd = setdiff(1:length(b),valInd);
ATrn = A(trnInd,:);
AVal = A(valInd,:);
bTrn = b(trnInd,:);
bVal = b(valInd,:);
% find the one most contributive term
for j = 1:size(A,2)
% exclude index j from the list
indL1 = setdiff(indL,j);
% add index j to the list
% indL1 = unique([ j]);
% least square solution of Ax = b
A1 = ATrn(:,indL1);
x1 = A1\bTrn;
A2 = AVal(:,indL1);
b2 = A2*x1;
errRec(i,j) = rms(b2-bVal);
mseIJ = immse(b2,bVal);
errBIC(i,j) = length(bTrn)*log(mseIJ)+(sum(indL1.^2)+length(indL1)^2)/length(indL1)*log(length(bTrn)); % modified BIC
end
% reference regression error
errRec(i,end) = rms(bVal);
bTemp = bVal;
bTemp(:) = 0;
indTemp = (1:size(A,2));
% reference BIC
errBIC(i,end) = length(bTrn)*log(immse(bTemp,bVal))+(sum(indTemp.^2)+length(indTemp)^2)/length(indTemp)*log(length(bTrn)); % modified BIC
end
%% plot error distributions: Burgers
txts = {'const 1','$u$','$u^2$','$u^3$','$u_x$','$uu_x$','$u^2u_x$','$u^3u_x$',...
'$u_{xx}$','$uu_{xx}$','$u^2u_{xx}$','$u^3u_{xx}$',...
'$u_{xxx}$','$uu_{xxx}$','$u^2u_{xxx}$','$u^3u_{xxx}$'};
clc;close all
ff = fig('units','inches','width',5,'height',5,'font','Times New Roman','fontsize',11);
h = tight_subplot(4,4,[.04 .04],[.08 .015],[.02 .03]);
for i=1:16
axes(h(i));box on;
histogram(errRec(:,i)*1000,10)
set(gca,'yticklabel',[])
xl = xlim; yl = ylim;
tx = 0.5*(xl(2)-xl(1))+xl(1);
ty = 0.8*(yl(2)-yl(1))+yl(1);
if ismember(i,[ ])
text(tx,ty, txts(i),'Interpreter','latex','Color','red')
else
text(tx,ty, txts(i),'Interpreter','latex','Color','black')
end
end
tx = -1.4*(xl(2)-xl(1))+xl(1);
ty = -0.3*(yl(2)-yl(1))+yl(1);
text(tx,ty,'$\varepsilon_\mathrm{Reg}, 10^{-3}$','Interpreter','latex')
% saveas(ff,'Figures\errReg_burgersN0_3.png')
% saveas(ff,'Figures\errReg_burgersN0_3.eps','epsc')
% savefig(ff,'Figures\errReg_burgersN0_3.fig')
%% plot error BIC distributions: Burgers
txts = {'const 1','$u$','$u^2$','$u^3$','$u_x$','$uu_x$','$u^2u_x$','$u^3u_x$',...
'$u_{xx}$','$uu_{xx}$','$u^2u_{xx}$','$u^3u_{xx}$',...
'$u_{xxx}$','$uu_{xxx}$','$u^2u_{xxx}$','$u^3u_{xxx}$'};
clc;close all
ff = fig('units','inches','width',5,'height',5,'font','Times New Roman','fontsize',11);
h = tight_subplot(4,4,[.04 .04],[.08 .015],[.02 .03]);
for i=1:16
axes(h(i));box on;
histogram(errBIC(:,i)/1000,10)
set(gca,'yticklabel',[])
xl = xlim; yl = ylim;
tx = 0.5*(xl(2)-xl(1))+xl(1);
ty = 0.8*(yl(2)-yl(1))+yl(1);
if ismember(i,[])
text(tx,ty, txts(i),'Interpreter','latex','Color','red')
else
text(tx,ty, txts(i),'Interpreter','latex','Color','black')
end
end
tx = -1.4*(xl(2)-xl(1))+xl(1);
ty = -0.3*(yl(2)-yl(1))+yl(1);
text(tx,ty,'$\varepsilon_\mathrm{BIC}, 10^{3}$','Interpreter','latex')
% saveas(ff,'Figures\errBIC_burgersN0_3.png')
% saveas(ff,'Figures\errBIC_burgersN0_3.eps','epsc')
% savefig(ff,'Figures\errBIC_burgersN0_3.fig')
%% Plot mean error: Burgers
clc;close all;
errAve = sum(errRec)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.18 .04],[.12 .03]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(12,0.06, '$\varepsilon_\mathrm{Reg}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylabel('$\bar{\varepsilon}_\mathrm{Reg}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,-0.002, txts(i),'Interpreter','latex');
set(tt,'Rotation',-45);
if ismember(i,[])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errRegAve_burgersN0_3.png')
% saveas(ff,'Figures\errRegAve_burgersN0_3.eps','epsc')
% savefig(ff,'Figures\errRegAve_burgersN0_3.fig')
%% Plot mean error BIC: Burgers
clc;close all;
errAve = sum(errBIC)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.04 .18],[.125 .03]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(12,errAve(end)*1.2, '$\varepsilon_\mathrm{BIC}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylabel('$\bar{\varepsilon}_\mathrm{BIC}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,50, txts(i),'Interpreter','latex');
set(tt,'Rotation',45);
if ismember(i,[ ])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errBICAve_burgersN0_3.png')
% saveas(ff,'Figures\errBICAve_burgersN0_3.eps','epsc')
% savefig(ff,'Figures\errBICAve_burgersN0_3.fig')
%% plot error distributions: KdV
txts = {'const 1','$u$','$u^2$','$u^3$','$u_x$','$uu_x$','$u^2u_x$','$u^3u_x$',...
'$u_{xx}$','$uu_{xx}$','$u^2u_{xx}$','$u^3u_{xx}$',...
'$u_{xxx}$','$uu_{xxx}$','$u^2u_{xxx}$','$u^3u_{xxx}$',...
'$u_{xxxx}$','$uu_{xxxx}$','$u^2u_{xxxx}$','$u^3u_{xxxx}$'};
clc;close all
ff = fig('units','inches','width',5,'height',5,'font','Times New Roman','fontsize',11);
h = tight_subplot(4,5,[.04 .04],[.08 .015],[.02 .03]);
for i=1:size(errRec,2)-1
axes(h(i));box on;
histogram(errRec(:,i)*1000,10)
set(gca,'yticklabel',[])
% title(strcat('(',char(96+i),')',{''}),'FontWeight','Normal')
xl = xlim; yl = ylim;
tx = 0.55*(xl(2)-xl(1))+xl(1);
ty = 0.8*(yl(2)-yl(1))+yl(1);
if ismember(i,[ ])
text(tx,ty, txts(i),'Interpreter','latex','Color','red')
else
text(tx,ty, txts(i),'Interpreter','latex','Color','black')
end
end
tx = -2.4*(xl(2)-xl(1))+xl(1);
ty = -0.3*(yl(2)-yl(1))+yl(1);
text(tx,ty,'$\varepsilon_\mathrm{Reg}, 10^{-3}$','Interpreter','latex')
% saveas(ff,'Figures\errReg_KdVN0_3.png')
% saveas(ff,'Figures\errReg_KdVN0_3.eps','epsc')
% savefig(ff,'Figures\errReg_KdVN0_3.fig')
%% plot error BIC distributions: KdV
txts = {'const 1','$u$','$u^2$','$u^3$','$u_x$','$uu_x$','$u^2u_x$','$u^3u_x$',...
'$u_{xx}$','$uu_{xx}$','$u^2u_{xx}$','$u^3u_{xx}$',...
'$u_{xxx}$','$uu_{xxx}$','$u^2u_{xxx}$','$u^3u_{xxx}$',...
'$u_{xxxx}$','$uu_{xxxx}$','$u^2u_{xxxx}$','$u^3u_{xxxx}$'};
clc;close all
ff = fig('units','inches','width',5,'height',5,'font','Times New Roman','fontsize',11);
h = tight_subplot(4,5,[.04 .04],[.08 .015],[.02 .03]);
for i=1:size(errBIC,2)-1
axes(h(i));box on;
histogram(errBIC(:,i)*1E-3,10)
set(gca,'yticklabel',[])
% title(strcat('(',char(96+i),')',{''}),'FontWeight','Normal')
xl = xlim; yl = ylim;
tx = 0.02*(xl(2)-xl(1))+xl(1);
ty = 0.8*(yl(2)-yl(1))+yl(1);
if ismember(i,[ ])
text(tx,ty, txts(i),'Interpreter','latex','Color','red')
else
text(tx,ty, txts(i),'Interpreter','latex','Color','black')
end
end
tx = -2.4*(xl(2)-xl(1))+xl(1);
ty = -0.3*(yl(2)-yl(1))+yl(1);
text(tx,ty,'$\varepsilon_\mathrm{BIC}, 10^{3}$','Interpreter','latex')
% saveas(ff,'Figures\errBIC_KdVN0_3.png')
% saveas(ff,'Figures\errBIC_KdVN0_3.eps','epsc')
% savefig(ff,'Figures\errBIC_KdVN0_3.fig')
%% Plot mean error: KdV
clc;close all;
errAve = sum(errRec)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.18 .04],[.12 .03]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(15,0.075, '$\varepsilon_\mathrm{Reg}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylabel('$\bar{\varepsilon}_\mathrm{Reg}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,-0.002, txts(i),'Interpreter','latex');
set(tt,'Rotation',-45);
if ismember(i,[])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errRegAve_kdvN0_3.png')
% saveas(ff,'Figures\errRegAve_kdvN0_3.eps','epsc')
% savefig(ff,'Figures\errRegAve_kdvN0_3.fig')
%% Plot mean error BIC: KdV
clc;close all;
errAve = sum(errBIC)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.04 .18],[.125 .03]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(12.5,errAve(end)*3, '$\varepsilon_\mathrm{BIC}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylabel('$\bar{\varepsilon}_\mathrm{BIC}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,50, txts(i),'Interpreter','latex');
set(tt,'Rotation',45);
if ismember(i,[])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errBICAve_kdvN0_3.png')
% saveas(ff,'Figures\errBICAve_kdvN0_3.eps','epsc')
% savefig(ff,'Figures\errBICAve_kdvN0_3.fig')
%% Plot mean error: Burgers2D
clc;close all;
txts = {'const 1','$u$','$u^2$','$u^3$',...
'$u_x+u_y$','$u(u_x+u_y)$','$u^2(u_x+u_y)$','$u^3(u_x+u_y)$',...
'$u_{xx}+u_{yy}$','$u(u_{xx}+u_{yy})$','$u^2(u_{xx}+u_{yy})$','$u^3(u_{xx}+u_{yy})$',...
'$u_{xxx}+u_{yyy}$','$u(u_{xxx}+u_{yyy})$','$u^2(u_{xxx}+u_{yyy})$','$u^3(u_{xxx}+u_{yyy})$'};
errAve = sum(errRec)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.30 .04],[.12 .10]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(12,0.055, '$\varepsilon_\mathrm{Reg}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylim([0 0.08])
ylabel('$\bar{\varepsilon}_\mathrm{Reg}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,-0.002, txts(i),'Interpreter','latex');
set(tt,'Rotation',-45);
if ismember(i,[])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errRegAve_bugers2DN0_3.png')
% saveas(ff,'Figures\errRegAve_bugers2DN0_3.eps','epsc')
% savefig(ff,'Figures\errRegAve_bugers2DN0_3.fig')
%% Plot mean error BIC: Burgers2D
clc;close all;
errAve = sum(errBIC)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.04 .28],[.125 .12]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(12.5,errAve(end)*1.2, '$\varepsilon_\mathrm{BIC}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylabel('$\bar{\varepsilon}_\mathrm{BIC}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,50, txts(i),'Interpreter','latex');
set(tt,'Rotation',45);
if ismember(i,[])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errBICAve_bugers2DN0_3.png')
% saveas(ff,'Figures\errBICAve_bugers2DN0_3.eps','epsc')
% savefig(ff,'Figures\errBICAve_bugers2DN0_3.fig')
%% Plot mean error: NS
clc;close all;
txts = {'$p_x$','$p_y$','$u_x+u_y$','$v_x+v_y$','$uu_x+vu_y$','$uv_x+vv_y$','$u^2u_x+v^2u_y$','$u^2v_x+v^2v_y$',...
'$u_{xx}+u_{yy}$','$v_{xx}+v_{yy}$','$uu_{xx}+vu_{yy}$','$uv_{xx}+vv_{yy}$','$u^2u_{xx}+v^2u_{yy}$','$u^2v_{xx}+v^2v_{yy}$',...
'$u_{xxx}+u_{yyy}$','$v_{xxx}+v_{yyy}$','$uu_{xxx}+vu_{yyy}$','$uv_{xxx}+vv_{yyy}$','$u^2u_{xxx}+v^2u_{yyy}$','$u^2v_{xxx}+v^2v_{yyy}$'};
errAve = sum(errRec)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.30 .04],[.12 .10]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(12,0.067, '$\varepsilon_\mathrm{Reg}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylim([0 0.08])
ylabel('$\bar{\varepsilon}_\mathrm{Reg}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,-0.002, txts(i),'Interpreter','latex');
set(tt,'Rotation',-45);
if ismember(i,[2 6 10])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errRegAve_NS_N0_4.png')
% saveas(ff,'Figures\errRegAve_NS_N0_4.eps','epsc')
% savefig(ff,'Figures\errRegAve_NS_N0_4.fig')
%% Plot mean error BIC: NS
clc;close all;
errAve = sum(errBIC)/numVals;
ff = fig('units','inches','width',5,'height',3.0,'font','Times New Roman','fontsize',11);
h = tight_subplot(1,1,[.04 .04],[.04 .28],[.125 .12]);
axes(h(1));box on;
bar(errAve(1:end-1))
yline(errAve(end),'-.r','LineWidth',1.5);
text(12.5,errAve(end)*1.6, '$\varepsilon_\mathrm{BIC}$ reference','Interpreter','latex');
set(gca,'xticklabel',[])
set(gca,'xtick',1:16)
ylabel('$\bar{\varepsilon}_\mathrm{BIC}$','Interpreter','latex')
for i=1:length(txts)
tt = text(i,50, txts(i),'Interpreter','latex');
set(tt,'Rotation',45);
if ismember(i,[])
set(tt,'Color','red');
end
end
% saveas(ff,'Figures\errBICAve_NS_N0_4.png')
% saveas(ff,'Figures\errBICAve_NS_N0_4.eps','epsc')
% savefig(ff,'Figures\errBICAve_NS_N0_4.fig')
%% functions FFT
function r=f(u)
u_tem=u(20:end-20,20:end-20);
u_f=fft2(u_tem);
indy=1:10;indx=1:10;NA=length(indx)*length(indy);
r=reshape(u_f(indx,indy),NA,1);
end
function r=fn(u)
u_tem=u(20:end-20,20:end-20,20:end-20);
u_f=fftn(u_tem);
indt=1:5;indx=1:5;indy=indx;NA=length(indt)*length(indx)*length(indy);
r=reshape(u_f(indt,indx,indy),NA,1);
end