-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathdemo_server.py
129 lines (95 loc) · 3.6 KB
/
demo_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
A minimal server for web demo of action recognition
"""
from flask import Flask, render_template, request, jsonify
from werkzeug.utils import secure_filename
import os
from pyActionRec.action_classifier import ActionClassifier
from pyActionRec.anet_db import ANetDB
import numpy as np
import youtube_dl
import urlparse
app = Flask(__name__)
# upload folder to hold uploaded/downloaded files
UPLOAD_FOLDER = 'tmp/'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# model specifications
models = [('models/resnet200_anet_2016_deploy.prototxt',
'models/resnet200_anet_2016.caffemodel',
1.0, 0, True, 224),
('models/bn_inception_anet_2016_temporal_deploy.prototxt',
'models/bn_inception_anet_2016_temporal.caffemodel.v5',
0.2, 1, False, 224)
]
GPU = 0
# init global variables
cls = ActionClassifier(models, dev_id=GPU)
db = ANetDB.get_db("1.3")
lb_list = db.get_ordered_label_list()
ydl = youtube_dl.YoutubeDL({u'outtmpl': u'tmp/%(id)s.%(ext)s'})
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1] in ['avi', 'mp4', 'webm', 'mkv']
@app.route("/")
def main():
return render_template('index.html')
def build_cls_ret(scores, k):
idx = np.argsort(scores)[::-1]
top_k_results = []
for i in xrange(k):
k = idx[i]
top_k_results.append({
'name': lb_list[k],
'score': str(scores[k])
})
return top_k_results
def run_classification(filename, use_rgb, use_flow):
try:
scores, frm_scores, total_time = cls.classify(filename, [use_rgb=='true', use_flow=='true'])
except Exception as e:
import traceback
import sys
traceback.print_exception(*sys.exc_info())
return jsonify(error='classification failed'), 200, {'ContentType': 'application/json'}
finally:
# clear the file
print "cleaning up the file contents"
os.remove(filename)
ret = build_cls_ret(scores, 3)
# return the result in json
return jsonify(error=None, results=ret, total_time=total_time, n_snippet=len(frm_scores), fps=1), 200, {
'ContentType': 'application/json'}
@app.route("/upload_video", methods=['POST'])
def upload_video():
if 'video_file' not in request.files:
return jsonify(error='upload not found'), 200, {'ContentType': 'application/json'}
upload_file = request.files['video_file']
if upload_file.filename == '':
return jsonify(error='the file has no name'), 200, {'ContentType': 'application/json'}
use_rgb = request.form['use_rgb']
use_flow = request.form['use_flow']
if upload_file and allowed_file(upload_file.filename):
filename = secure_filename(upload_file.filename)
# first save the file
savename = os.path.join(app.config['UPLOAD_FOLDER'], filename)
upload_file.save(savename)
# classify the video
return run_classification(savename, use_rgb, use_flow)
else:
return jsonify(error='empty or not allowed file'), 200, {'ContentType': 'application/json'}
@app.route("/upload_url", methods=['POST'])
def upload_url():
data = request.form
url = data['video_url']
use_rgb = data['use_rgb']
use_flow = data['use_flow']
try:
file_info = ydl.extract_info(unicode(url))
except:
return jsonify(error='invalid URL'), 200, {'ContentType': 'application/json'}
filename = os.path.join('tmp',file_info['id']+'.'+file_info['ext'])
# classify the video
return run_classification(filename, use_rgb, use_flow)
if __name__ == "__main__":
# run the Flask app
app.debug = True
app.run()