diff --git a/README.Rmd b/README.Rmd index 0840b3b..9e1b195 100644 --- a/README.Rmd +++ b/README.Rmd @@ -157,7 +157,7 @@ walk_threshold_steps(empirical_statistics, null_statistics, steps = c(2, 2.5, 3) - The [JuliaConnectoR](https://github.com/stefan-m-lenz/JuliaConnectoR) package for powering the R interface to Julia. -- The Julia packages [GLM.jl](https://github.com/JuliaStats/GLM.jl) and [MixedModels.jl](https://github.com/JuliaStats/MixedModels.jl) for fast implementations (mixed effects) regression models. +- The Julia packages [GLM.jl](https://github.com/JuliaStats/GLM.jl) and [MixedModels.jl](https://github.com/JuliaStats/MixedModels.jl) for fast implementations of (mixed effects) regression models. - Existing implementations of CPA in R ([permuco](https://jaromilfrossard.github.io/permuco/), [permutes](https://github.com/cvoeten/permutes), etc.) whose designs inspired the CPA interface in jlmerclusterperm. diff --git a/README.md b/README.md index b9771d9..daee665 100644 --- a/README.md +++ b/README.md @@ -257,7 +257,7 @@ walk_threshold_steps(empirical_statistics, null_statistics, steps = c(2, 2.5, 3) - The Julia packages [GLM.jl](https://github.com/JuliaStats/GLM.jl) and [MixedModels.jl](https://github.com/JuliaStats/MixedModels.jl) for - fast implementations (mixed effects) regression models. + fast implementations of (mixed effects) regression models. - Existing implementations of CPA in R ([permuco](https://jaromilfrossard.github.io/permuco/), diff --git a/docs/404.html b/docs/404.html index 8acfaa4..d8b1cc7 100644 --- a/docs/404.html +++ b/docs/404.html @@ -33,7 +33,7 @@ jlmerclusterperm - 1.0.1 + 1.0.2
The output of the asynchronous CPA ( The paper Maris & Oostenveld (2007) which originally proposed the cluster-based permutation analysis. The JuliaConnectoR package for powering the R interface to Julia. The Julia packages GLM.jl and MixedModels.jl for fast implementations (mixed effects) regression models. The Julia packages GLM.jl and MixedModels.jl for fast implementations of (mixed effects) regression models. Existing implementations of CPA in R (permuco, permutes, etc.) whose designs inspired the CPA interface in jlmerclusterperm. To cite the cluster-based permutation test: CRAN release: 2023-07-15 Fixes for CRAN:CPA_async
) is
identical to the initial CPA that we ran at the beginning
(CPA
) because both were ran with the default seed of 1 and
diff --git a/docs/articles/deCarvalho-et-al-2021.html b/docs/articles/deCarvalho-et-al-2021.html
index 3d244f9..d4b4c02 100644
--- a/docs/articles/deCarvalho-et-al-2021.html
+++ b/docs/articles/deCarvalho-et-al-2021.html
@@ -35,7 +35,7 @@
jlmerclusterperm
- 1.0.1
+ 1.0.2
In other contextsfull_test <- clusterpermute(jlmer_spec, threshold = 1, nsim = 1000, progress = FALSE)
})
#> user system elapsed
-#> 0.00 0.02 2.75
+#> 0.02 0.05 2.66
full_test
#> $null_cluster_dists
#> ── Null cluster-mass distribution (t > 1) ────────────── <null_cluster_dists> ──
diff --git a/docs/authors.html b/docs/authors.html
index c75eda0..14fa1e7 100644
--- a/docs/authors.html
+++ b/docs/authors.html
@@ -10,7 +10,7 @@
jlmerclusterperm
- 1.0.1
+ 1.0.2
Acknowledgments
Citationshttps://cran.r-project.org/package=jlmerclusterperm.
+
diff --git a/docs/news/index.html b/docs/news/index.html
index 8879278..d45df38 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -10,7 +10,7 @@
jlmerclusterperm
- 1.0.1
+ 1.0.2
Case Studies
jlmerclusterperm 1.0.2
+jlmerclusterperm 1.0.2
Bug fixes
jlmerclusterperm_setup()
now works for rc and alpha builds of JuliaExamples
# Test cluster mass/probability under different threshold values
walk_threshold_steps(empirical_statistics, null_statistics, steps = 1:3)
-#> ■■■■■■■■■■■ 33% | ETA: 6s
+#> ■■■■■■■■■■■ 33% | ETA: 10s
+#> ■■■■■■■■■■■■■■■■■■■■■ 67% | ETA: 3s
#> # A tibble: 9 × 8
#> threshold predictor id start end length sum_statistic pvalue
#> <int> <chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
diff --git a/docs/search.json b/docs/search.json
index e1bee64..19b3297 100644
--- a/docs/search.json
+++ b/docs/search.json
@@ -1 +1 @@
-[{"path":"https://yjunechoe.github.io/jlmerclusterperm/articles/asynchronous-cpa.html","id":"setup","dir":"Articles","previous_headings":"","what":"Setup","title":"Asynchronous CPA","text":"Minimal example data CPA specification: Example CPA (1000 simulations): details actual CPA skipped ’s focus vignette, example readme just nsim.","code":"library(jlmerclusterperm) jlmerclusterperm_setup(verbose = FALSE) chickweights <- ChickWeight chickweights$Time <- as.integer(factor(chickweights$Time)) chickweights_spec <- make_jlmer_spec( formula = weight ~ 1 + Diet, data = chickweights, subject = \"Chick\", time = \"Time\" ) set_rng_state(123L) CPA <- clusterpermute( chickweights_spec, threshold = 2.5, nsim = 1000, progress = FALSE )"},{"path":"https://yjunechoe.github.io/jlmerclusterperm/articles/asynchronous-cpa.html","id":"basic-idea","dir":"Articles","previous_headings":"","what":"Basic idea","title":"Asynchronous CPA","text":"basic idea behind asynchronous CPA strategy start background R process whose sole job send instructions CPA Julia. ’s asynchronous running CPA way block interactive R session. Since work done Julia anyways, parallelization virtually impact performance evaluating R code. future package allows asynchronous evaluation R code. ’s big package implementing complex topic. can read project futureverse just show bare minimum . advanced users, note ’re use parallelization asynchronous properties (non-blocking evaluation R code background process). recommended start multiple R processes running CPA Julia session shared already multithreaded (can spare cores, set options(\"jlmerclusterperm.nthreads\") calling jlmerclusterperm_setup()). Later updates jlmerclusterperm may wrap workflow principled way, now vignette serves minimally working example asynchronously running CPA.","code":""},{"path":[]},{"path":"https://yjunechoe.github.io/jlmerclusterperm/articles/asynchronous-cpa.html","id":"setup-for-async-cpa","dir":"Articles","previous_headings":"Walkthrough","what":"Setup for async CPA","title":"Asynchronous CPA","text":"Three things order workflow: Load future package Initialize multisession future Grab options jlmerclusterperm package environment Please treat .jlmerclusterperm internal variable read-object - ’s unexported meant manipulated.","code":"library(future) plan(multisession) pkgopts <- as.list(jlmerclusterperm:::.jlmerclusterperm)"},{"path":"https://yjunechoe.github.io/jlmerclusterperm/articles/asynchronous-cpa.html","id":"creating-the-future-object","dir":"Articles","previous_headings":"Walkthrough","what":"Creating the future object","title":"Asynchronous CPA","text":"start creating special object class