-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
567 lines (439 loc) · 22.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import torch
from models import LatentEBM, ToyEBM, BetaVAE_H, LatentEBM128
from tensorflow.python.platform import flags
import torch.nn.functional as F
import os
from dataset import IntPhysDataset, ToyDataset, TFImagenetLoader, CubesColor, CubesColorPair, TFTaskAdaptation, DSprites, Blender, Cub, Nvidia, Clevr, Exercise, CelebaHQ, Kitti, Airplane, Faces, ClevrLighting
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.optim import Adam
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from easydict import EasyDict
import os.path as osp
from torch.nn.utils import clip_grad_norm
import numpy as np
from imageio import imwrite
import cv2
import argparse
import pdb
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
import torch.backends.cudnn as cudnn
import random
from torchvision.utils import make_grid
from dataset import MultiDspritesLoader, TetrominoesLoader
from imageio import get_writer
"""Parse input arguments"""
parser = argparse.ArgumentParser(description='Train EBM model')
parser.add_argument('--train', action='store_true', help='whether or not to train')
parser.add_argument('--optimize_test', action='store_true', help='whether or not to train')
parser.add_argument('--cuda', action='store_true', help='whether to use cuda or not')
parser.add_argument('--single', action='store_true', help='test overfitting of the dataset')
parser.add_argument('--dataset', default='blender', type=str, help='Dataset to use (intphys or others or imagenet or cubes)')
parser.add_argument('--logdir', default='cachedir', type=str, help='location where log of experiments will be stored')
parser.add_argument('--exp', default='default', type=str, help='name of experiments')
# training
parser.add_argument('--resume_iter', default=0, type=int, help='iteration to resume training')
parser.add_argument('--batch_size', default=64, type=int, help='size of batch of input to use')
parser.add_argument('--num_epoch', default=10000, type=int, help='number of epochs of training to run')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate for training')
parser.add_argument('--log_interval', default=10, type=int, help='log outputs every so many batches')
parser.add_argument('--save_interval', default=1000, type=int, help='save outputs every so many batches')
# data
parser.add_argument('--data_workers', default=4, type=int, help='Number of different data workers to load data in parallel')
parser.add_argument('--ensembles', default=1, type=int, help='use an ensemble of models')
parser.add_argument('--vae-beta', type=float, default=0.)
# EBM specific settings
# Model specific settings
parser.add_argument('--filter_dim', default=64, type=int, help='number of filters to use')
parser.add_argument('--components', default=2, type=int, help='number of components to explain an image with')
parser.add_argument('--component_weight', action='store_true', help='optimize for weights of the components also')
parser.add_argument('--tie_weight', action='store_true', help='tie the weights between seperate models')
parser.add_argument('--optimize_mask', action='store_true', help='also optimize a segmentation mask over image')
parser.add_argument('--recurrent_model', action='store_true', help='use a recurrent model to infer latents')
parser.add_argument('--pos_embed', action='store_true', help='add a positional embedding to model')
parser.add_argument('--spatial_feat', action='store_true', help='use spatial latents for object segmentation')
parser.add_argument('--num_steps', default=10, type=int, help='Steps of gradient descent for training')
parser.add_argument('--num_visuals', default=16, type=int, help='Number of visuals')
parser.add_argument('--num_additional', default=0, type=int, help='Number of additional components to add')
parser.add_argument('--step_lr', default=500.0, type=float, help='step size of latents')
parser.add_argument('--latent_dim', default=64, type=int, help='dimension of the latent')
parser.add_argument('--sample', action='store_true', help='generate negative samples through Langevin')
parser.add_argument('--decoder', action='store_true', help='decoder for model')
# Distributed training hyperparameters
parser.add_argument('--nodes', default=1, type=int, help='number of nodes for training')
parser.add_argument('--gpus', default=1, type=int, help='number of gpus per nodes')
parser.add_argument('--node_rank', default=0, type=int, help='rank of node')
def average_gradients(models):
size = float(dist.get_world_size())
for model in models:
for name, param in model.named_parameters():
if param.grad is None:
continue
dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM)
param.grad.data /= size
def gen_image(latents, FLAGS, models, im_neg, im, num_steps, sample=False, create_graph=True, idx=None, weights=None):
im_noise = torch.randn_like(im_neg).detach()
im_negs_samples = []
im_negs = []
latents = torch.stack(latents, dim=0)
if FLAGS.decoder:
masks = []
colors = []
for i in range(len(latents)):
if idx is not None and idx != i:
pass
else:
color, mask = models[i % FLAGS.components].forward(None, latents[i])
masks.append(mask)
colors.append(color)
masks = F.softmax(torch.stack(masks, dim=1), dim=1)
colors = torch.stack(colors, dim=1)
im_neg = torch.sum(masks * colors, dim=1)
im_negs = [im_neg]
im_grad = torch.zeros_like(im_neg)
else:
im_neg.requires_grad_(requires_grad=True)
s = im.size()
masks = torch.zeros(s[0], FLAGS.components, s[-2], s[-1]).to(im_neg.device)
masks.requires_grad_(requires_grad=True)
for i in range(num_steps):
im_noise.normal_()
energy = 0
for j in range(len(latents)):
if idx is not None and idx != j:
pass
else:
ix = j % FLAGS.components
energy = models[j % FLAGS.components].forward(im_neg, latents[j]) + energy
im_grad, = torch.autograd.grad([energy.sum()], [im_neg], create_graph=create_graph)
im_neg = im_neg - FLAGS.step_lr * im_grad
latents = latents
im_neg = torch.clamp(im_neg, 0, 1)
im_negs.append(im_neg)
im_neg = im_neg.detach()
im_neg.requires_grad_()
return im_neg, im_negs, im_grad, masks
def ema_model(models, models_ema, mu=0.999):
for (model, model_ema) in zip(models, models_ema):
for param, param_ema in zip(model.parameters(), model_ema.parameters()):
param_ema.data[:] = mu * param_ema.data + (1 - mu) * param.data
def sync_model(models):
size = float(dist.get_world_size())
for model in models:
for param in model.parameters():
dist.broadcast(param.data, 0)
def init_model(FLAGS, device, dataset):
if FLAGS.tie_weight:
if FLAGS.dataset == "toy":
model = ToyEBM(FLAGS, dataset).to(device)
else:
if FLAGS.vae_beta:
model = BetaVAE_H(z_dim=FLAGS.latent_dim, nc=3).to(device)
FLAGS.ensembles = 1
FLAGS.components = 1
else:
if FLAGS.dataset == "celebahq_128":
model = LatentEBM128(FLAGS, dataset).to(device)
else:
model = LatentEBM(FLAGS, dataset).to(device)
models = [model for i in range(FLAGS.ensembles)]
optimizers = [Adam(model.parameters(), lr=FLAGS.lr)]
else:
models = [LatentEBM(FLAGS, dataset).to(device) for i in range(FLAGS.ensembles)]
optimizers = [Adam(model.parameters(), lr=FLAGS.lr) for model in models]
return models, optimizers
def test(train_dataloader, models, FLAGS, step=0):
if FLAGS.cuda:
dev = torch.device("cuda")
else:
dev = torch.device("cpu")
replay_buffer = None
[model.eval() for model in models]
for im, idx in train_dataloader:
im = im.to(dev)
idx = idx.to(dev)
im = im[:FLAGS.num_visuals]
idx = idx[:FLAGS.num_visuals]
batch_size = im.size(0)
latent = models[0].embed_latent(im)
latents = torch.chunk(latent, FLAGS.components, dim=1)
im_init = torch.rand_like(im)
assert len(latents) == FLAGS.components
im_neg, _, im_grad, mask = gen_image(latents, FLAGS, models, im_init, im, FLAGS.num_steps, sample=FLAGS.sample,
create_graph=False)
im_neg = im_neg.detach()
im_components = []
if FLAGS.components > 1:
for i, latent in enumerate(latents):
im_init = torch.rand_like(im)
latents_select = latents[i:i+1]
im_component, _, _, _ = gen_image(latents_select, FLAGS, models, im_init, im, FLAGS.num_steps, sample=FLAGS.sample,
create_graph=False)
im_components.append(im_component)
im_init = torch.rand_like(im)
latents_perm = [torch.cat([latent[i:], latent[:i]], dim=0) for i, latent in enumerate(latents)]
im_neg_perm, _, im_grad_perm, _ = gen_image(latents_perm, FLAGS, models, im_init, im, FLAGS.num_steps, sample=FLAGS.sample,
create_graph=False)
im_neg_perm = im_neg_perm.detach()
im_init = torch.rand_like(im)
add_latents = list(latents)
for i in range(FLAGS.num_additional):
add_latents.append(torch.roll(latents[i], i + 1, 0))
im_neg_additional, _, _, _ = gen_image(tuple(add_latents), FLAGS, models, im_init, im, FLAGS.num_steps, sample=FLAGS.sample,
create_graph=False)
im.requires_grad = True
im_grads = []
for i, latent in enumerate(latents):
if FLAGS.decoder:
im_grad = torch.zeros_like(im)
else:
energy_pos = models[i].forward(im, latents[i])
im_grad = torch.autograd.grad([energy_pos.sum()], [im])[0]
im_grads.append(im_grad)
im_grad = torch.stack(im_grads, dim=1)
s = im.size()
im_size = s[-1]
im_grad = im_grad.view(batch_size, FLAGS.components, 3, im_size, im_size) # [4, 3, 3, 128, 128]
im_grad_dense = im_grad.view(batch_size, FLAGS.components, 1, 3 * im_size * im_size, 1) # [4, 3, 1, 49152, 1]
im_grad_min = im_grad_dense.min(dim=3, keepdim=True)[0]
im_grad_max = im_grad_dense.max(dim=3, keepdim=True)[0] # [4, 3, 1, 1, 1]
im_grad = (im_grad - im_grad_min) / (im_grad_max - im_grad_min + 1e-5) # [4, 3, 3, 128, 128]
im_grad[:, :, :, :1, :] = 1
im_grad[:, :, :, -1:, :] = 1
im_grad[:, :, :, :, :1] = 1
im_grad[:, :, :, :, -1:] = 1
im_output = im_grad.permute(0, 3, 1, 4, 2).reshape(batch_size * im_size, FLAGS.components * im_size, 3)
im_output = im_output.cpu().detach().numpy() * 100
im_output = (im_output - im_output.min()) / (im_output.max() - im_output.min())
im = im.cpu().detach().numpy().transpose((0, 2, 3, 1)).reshape(batch_size*im_size, im_size, 3)
im_output = np.concatenate([im_output, im], axis=1)
im_output = im_output*255
imwrite("result/%s/s%08d_grad.png" % (FLAGS.exp,step), im_output)
im_neg = im_neg_tensor = im_neg.detach().cpu()
im_components = [im_components[i].detach().cpu() for i in range(len(im_components))]
im_neg = torch.cat([im_neg] + im_components)
im_neg = np.clip(im_neg, 0.0, 1.0)
im_neg = make_grid(im_neg, nrow=int(im_neg.shape[0] / (FLAGS.components + 1))).permute(1, 2, 0)
im_neg = im_neg.numpy()*255
imwrite("result/%s/s%08d_gen.png" % (FLAGS.exp,step), im_neg)
if FLAGS.components > 1:
im_neg_perm = im_neg_perm.detach().cpu()
im_components_perm = []
for i,im_component in enumerate(im_components):
im_components_perm.append(torch.cat([im_component[i:], im_component[:i]]))
im_neg_perm = torch.cat([im_neg_perm] + im_components_perm)
im_neg_perm = np.clip(im_neg_perm, 0.0, 1.0)
im_neg_perm = make_grid(im_neg_perm, nrow=int(im_neg_perm.shape[0] / (FLAGS.components + 1))).permute(1, 2, 0)
im_neg_perm = im_neg_perm.numpy()*255
imwrite("result/%s/s%08d_gen_perm.png" % (FLAGS.exp,step), im_neg_perm)
im_neg_additional = im_neg_additional.detach().cpu()
for i in range(FLAGS.num_additional):
im_components.append(torch.roll(im_components[i], i + 1, 0))
im_neg_additional = torch.cat([im_neg_additional] + im_components)
im_neg_additional = np.clip(im_neg_additional, 0.0, 1.0)
im_neg_additional = make_grid(im_neg_additional,
nrow=int(im_neg_additional.shape[0] / (FLAGS.components + FLAGS.num_additional + 1))).permute(1, 2, 0)
im_neg_additional = im_neg_additional.numpy()*255
imwrite("result/%s/s%08d_gen_add.png" % (FLAGS.exp,step), im_neg_additional)
print('test at step %d done!' % step)
break
[model.train() for model in models]
def train(train_dataloader, test_dataloader, logger, models, optimizers, FLAGS, logdir, rank_idx):
it = FLAGS.resume_iter
[optimizer.zero_grad() for optimizer in optimizers]
dev = torch.device("cuda")
# Use LPIPS loss for CelebA-HQ 128x128
if FLAGS.dataset == "celebahq_128":
import lpips
loss_fn_vgg = lpips.LPIPS(net='vgg').cuda()
for epoch in range(FLAGS.num_epoch):
for im, idx in train_dataloader:
im = im.to(dev)
idx = idx.to(dev)
im_orig = im
random_idx = random.randint(0, FLAGS.ensembles - 1)
random_idx = 0
latent = models[0].embed_latent(im)
latents = torch.chunk(latent, FLAGS.components, dim=1)
im_neg = torch.rand_like(im)
im_neg_init = im_neg
im_neg, im_negs, im_grad, _ = gen_image(latents, FLAGS, models, im_neg, im, FLAGS.num_steps, FLAGS.sample)
im_negs = torch.stack(im_negs, dim=1)
energy_pos = 0
energy_neg = 0
energy_poss = []
energy_negs = []
for i in range(FLAGS.components):
energy_poss.append(models[i].forward(im, latents[i]))
energy_negs.append(models[i].forward(im_neg.detach(), latents[i]))
energy_pos = torch.stack(energy_poss, dim=1)
energy_neg = torch.stack(energy_negs, dim=1)
ml_loss = (energy_pos - energy_neg).mean()
im_loss = torch.pow(im_negs[:, -1:] - im[:, None], 2).mean()
if it < 10000 or FLAGS.dataset != "celebahq_128":
loss = im_loss
else:
vgg_loss = loss_fn_vgg(im_negs[:, -1], im).mean()
loss = vgg_loss + 0.1 * im_loss
loss.backward()
if FLAGS.gpus > 1:
average_gradients(models)
[torch.nn.utils.clip_grad_norm_(model.parameters(), 10.0) for model in models]
[optimizer.step() for optimizer in optimizers]
[optimizer.zero_grad() for optimizer in optimizers]
if it % FLAGS.log_interval == 0 and rank_idx == 0:
loss = loss.item()
energy_pos_mean = energy_pos.mean().item()
energy_neg_mean = energy_neg.mean().item()
energy_pos_std = energy_pos.std().item()
energy_neg_std = energy_neg.std().item()
kvs = {}
kvs['loss'] = loss
kvs['ml_loss'] = ml_loss.item()
kvs['im_loss'] = im_loss.item()
if FLAGS.dataset == "celebahq_128" and ('vgg_loss' in kvs):
kvs['vgg_loss'] = vgg_loss.item()
kvs['energy_pos_mean'] = energy_pos_mean
kvs['energy_neg_mean'] = energy_neg_mean
kvs['energy_pos_std'] = energy_pos_std
kvs['energy_neg_std'] = energy_neg_std
kvs['average_im_grad'] = torch.abs(im_grad).max()
string = "Iteration {} ".format(it)
for k, v in kvs.items():
string += "%s: %.6f " % (k,v)
logger.add_scalar(k, v, it)
print(string)
if it % FLAGS.save_interval == 0 and rank_idx == 0:
model_path = osp.join(logdir, "model_{}.pth".format(it))
ckpt = {'FLAGS': FLAGS}
for i in range(len(models)):
ckpt['model_state_dict_{}'.format(i)] = models[i].state_dict()
for i in range(len(optimizers)):
ckpt['optimizer_state_dict_{}'.format(i)] = optimizers[i].state_dict()
torch.save(ckpt, model_path)
print("Saving model in directory....")
print('run test')
test(test_dataloader, models, FLAGS, step=it)
it += 1
def main_single(rank, FLAGS):
rank_idx = FLAGS.node_rank * FLAGS.gpus + rank
world_size = FLAGS.nodes * FLAGS.gpus
if not os.path.exists('result/%s' % FLAGS.exp):
try:
os.makedirs('result/%s' % FLAGS.exp)
except:
pass
if FLAGS.dataset == 'cubes':
dataset = CubesColor(FLAGS, train=True)
test_dataset = CubesColor(FLAGS, train=False)
elif FLAGS.dataset == 'cubes_pair':
dataset = CubesColorPair(FLAGS, train=True)
test_dataset = CubesColorPair(FLAGS, train=False)
elif FLAGS.dataset == "nvidia":
dataset = Nvidia(FLAGS)
test_dataset = dataset
elif FLAGS.dataset == "clevr":
dataset = Clevr(FLAGS)
test_dataset = dataset
elif FLAGS.dataset == "clevr_lighting":
dataset = ClevrLighting(FLAGS)
test_dataset = dataset
elif FLAGS.dataset == "exercise":
dataset = Exercise(FLAGS)
test_dataset = dataset
elif FLAGS.dataset == "intphys":
dataset = IntPhysDataset(FLAGS)
test_dataset = dataset
elif FLAGS.dataset == "celebahq":
dataset = CelebaHQ(resolution=64)
test_dataset = dataset
elif FLAGS.dataset == "celebahq_128":
dataset = CelebaHQ(resolution=128)
test_dataset = dataset
elif FLAGS.dataset == "kitti":
dataset = Kitti(FLAGS)
test_dataset = dataset
elif FLAGS.dataset == "faces":
dataset = Faces(FLAGS)
test_dataset = dataset
else:
dataset = ToyDataset(FLAGS)
test_dataset = ToyDataset(FLAGS)
shuffle=True
sampler = None
if world_size > 1:
group = dist.init_process_group(backend='nccl', init_method='tcp://localhost:8113', world_size=world_size, rank=rank_idx, group_name="default")
torch.cuda.set_device(rank)
device = torch.device('cuda')
logdir = osp.join(FLAGS.logdir, FLAGS.exp)
FLAGS_OLD = FLAGS
if FLAGS.resume_iter != 0:
model_path = osp.join(logdir, "model_{}.pth".format(FLAGS.resume_iter))
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
FLAGS = checkpoint['FLAGS']
FLAGS.resume_iter = FLAGS_OLD.resume_iter
FLAGS.save_interval = FLAGS_OLD.save_interval
FLAGS.nodes = FLAGS_OLD.nodes
FLAGS.gpus = FLAGS_OLD.gpus
FLAGS.node_rank = FLAGS_OLD.node_rank
FLAGS.train = FLAGS_OLD.train
FLAGS.batch_size = FLAGS_OLD.batch_size
FLAGS.num_visuals = FLAGS_OLD.num_visuals
FLAGS.num_additional = FLAGS_OLD.num_additional
FLAGS.decoder = FLAGS_OLD.decoder
FLAGS.optimize_test = FLAGS_OLD.optimize_test
FLAGS.temporal = FLAGS_OLD.temporal
FLAGS.sim = FLAGS_OLD.sim
FLAGS.exp = FLAGS_OLD.exp
FLAGS.step_lr = FLAGS_OLD.step_lr
FLAGS.num_steps = FLAGS_OLD.num_steps
FLAGS.vae_beta = FLAGS_OLD.vae_beta
models, optimizers = init_model(FLAGS, device, dataset)
state_dict = models[0].state_dict()
for i, (model, optimizer) in enumerate(zip(models, optimizers)):
model.load_state_dict(checkpoint['model_state_dict_{}'.format(i)], strict=False)
optimizer.load_state_dict(checkpoint['optimizer_state_dict_{}'.format(i)], strict=False)
else:
models, optimizers = init_model(FLAGS, device, dataset)
if FLAGS.gpus > 1:
sync_model(models)
if FLAGS.dataset == "multidsprites":
train_dataloader = MultiDspritesLoader(FLAGS.batch_size)
test_dataloader = MultiDspritesLoader(FLAGS.batch_size)
elif FLAGS.dataset == "tetris":
train_dataloader = TetrominoesLoader(FLAGS.batch_size)
test_dataloader = TetrominoesLoader(FLAGS.batch_size)
else:
train_dataloader = DataLoader(dataset, num_workers=FLAGS.data_workers, batch_size=FLAGS.batch_size, shuffle=shuffle, pin_memory=False)
test_dataloader = DataLoader(test_dataset, num_workers=FLAGS.data_workers, batch_size=FLAGS.num_visuals, shuffle=True, pin_memory=False, drop_last=True)
logger = SummaryWriter(logdir)
it = FLAGS.resume_iter
if FLAGS.train:
models = [model.train() for model in models]
else:
models = [model.eval() for model in models]
if FLAGS.train:
train(train_dataloader, test_dataloader, logger, models, optimizers, FLAGS, logdir, rank_idx)
elif FLAGS.optimize_test:
test_optimize(test_dataloader, models, FLAGS, step=FLAGS.resume_iter)
else:
test(test_dataloader, models, FLAGS, step=FLAGS.resume_iter)
def main():
FLAGS = parser.parse_args()
FLAGS.ensembles = FLAGS.components
FLAGS.tie_weight = True
FLAGS.sample = True
logdir = osp.join(FLAGS.logdir, FLAGS.exp)
if not osp.exists(logdir):
os.makedirs(logdir)
if FLAGS.gpus > 1:
mp.spawn(main_single, nprocs=FLAGS.gpus, args=(FLAGS,))
else:
main_single(0, FLAGS)
if __name__ == "__main__":
main()