-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathGazePTR.py
90 lines (63 loc) · 2.4 KB
/
GazePTR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import torch.nn as nn
import numpy as np
import math
import copy
from IVModule import Backbone, Transformer, PoseTransformer, TripleDifferentialProj, PositionalEncoder
def ep0(x):
return x.unsqueeze(0)
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
# used for origin.
transIn = 128
convDims = [64, 128, 256, 512]
# norm only used for gaze estimation.
self.bnorm = Backbone(1, transIn, convDims)
# MLP for gaze estimation
self.MLP_n_dir = nn.Linear(transIn, 2)
module_list = []
for i in range(len(convDims)):
module_list.append(nn.Linear(transIn, 2))
self.MLPList_n = nn.ModuleList(module_list)
# Loss function
self.loss_op_re = nn.L1Loss()
def forward(self, x_in, train=True):
# feature [outFeatureNum, Batch, transIn], MLfeatgure: list[x1, x2...]
feature_n, feature_list_n = self.bnorm(x_in['norm_face'])
# Get feature for different task
# [5, 128] [1. 5, 128]
feature_n_dir = feature_n.squeeze()
# estimate gaze from fused feature
gaze = self.MLP_n_dir(feature_n_dir)
# zone = self.MLP_o_zone(feature_o_zone)
# for loss caculation
loss_gaze_n = []
if train:
for i, feature in enumerate(feature_list_n):
loss_gaze_n.append(self.MLPList_n[i](feature))
return gaze, None, None, loss_gaze_n
def loss(self, x_in, label):
gaze, _, _, loss_gaze_n = self.forward(x_in)
loss1 = 2 * self.loss_op_re(gaze, label.normGaze)
loss2 = 0
# for zone in zones:
# loss2 += (0.2/3) * self.loss_op_cls(zone, label.zone.view(-1))
loss3 = 0
# for pred in loss_gaze_o:
# loss3 += self.loss_op_re(pred, label.originGaze)
loss4 = 0
for pred in loss_gaze_n:
loss4 += self.loss_op_re(pred, label.normGaze)
loss = loss1 + loss2 + loss3 + loss4
return loss, [loss1, loss2, loss3, loss4]
if __name__ == '__main__':
x_in = {'origin': torch.zeros([5, 3, 224, 224]).cuda(),
'norm': torch.zeros([5, 3, 224, 224]).cuda(),
'pos': torch.zeros(5, 2, 6).cuda()
}
model = Model()
model = model.to('cuda')
print(model)
a = model(x_in)
print(a)