-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval_pyramid.sh
executable file
·91 lines (91 loc) · 2.69 KB
/
eval_pyramid.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env bash
source env.sh
n=1
model=mvsnet
data=$(date +"%m%d")
batch=1
lr=0.001
lr_scheduler=cosinedecay
loss=mvsnet_loss_l1norm
fea_net=UNetDS2GN
cost_net=RegNetUS0GN
inverse_depth=True
syncbn=True
origin_size=False
cost_aggregation=91
refine=False
save_depth=True
fusion=True
checkpoint_list=(11)
ckpt=./checkpoints/UNetDS2GN_RegNetUS0GN/model_0000
now=$(date +"%Y%m%d_%H%M%S")
echo $now
for idx in ${checkpoint_list[@]}
do
name=testPoint_${data}_g${n}_b${batch}_${model}_inversecv_${fea_net}_${cost_net}_id${inverse_depth}_sb${syncbn}_os${origin_size}_ca${cost_aggregation}_rf${refine}_sd${save_depth}_fu${fusion}_${part}_ckpt${idx}
echo $name
echo 'process light'${light_idx}
CUDA_VISIBLE_DEVICES=0 python -u eval.py \
--dataset=dtu_yao_eval \
--model=$model \
--syncbn=$syncbn \
--batch_size=${batch} \
--inverse_cost_volume \
--inverse_depth=${inverse_depth} \
--origin_size=$origin_size \
--syncbn=$syncbn \
--refine=$refine \
--save_depth=$save_depth \
--fusion=False \
--cost_aggregation=$cost_aggregation \
--ngpu=${n} \
--fea_net=${fea_net} \
--cost_net=${cost_net} \
--pyramid=0 \
--testpath=$DTU_TESTING \
--testlist=lists/dtu/test.txt \
--loadckpt=$ckpt${idx}.ckpt \
--outdir=./outputs_ms_1101 &
CUDA_VISIBLE_DEVICES=1 python -u eval.py \
--dataset=dtu_yao_eval \
--model=$model \
--syncbn=$syncbn \
--batch_size=${batch} \
--inverse_cost_volume \
--inverse_depth=${inverse_depth} \
--origin_size=$origin_size \
--syncbn=$syncbn \
--refine=$refine \
--save_depth=$save_depth \
--fusion=False \
--cost_aggregation=$cost_aggregation \
--ngpu=${n} \
--fea_net=${fea_net} \
--cost_net=${cost_net} \
--pyramid=1 \
--testpath=$DTU_TESTING \
--testlist=lists/dtu/test.txt \
--loadckpt=$ckpt${idx}.ckpt \
--outdir=./outputs_ms_1101 &
CUDA_VISIBLE_DEVICES=2 python -u eval.py \
--dataset=dtu_yao_eval \
--model=$model \
--syncbn=$syncbn \
--batch_size=${batch} \
--inverse_cost_volume \
--inverse_depth=${inverse_depth} \
--origin_size=$origin_size \
--syncbn=$syncbn \
--refine=$refine \
--save_depth=True \
--fusion=False \
--cost_aggregation=$cost_aggregation \
--ngpu=${n} \
--fea_net=${fea_net} \
--cost_net=${cost_net} \
--pyramid=2 \
--testpath=$DTU_TESTING \
--testlist=lists/dtu/test.txt \
--loadckpt=$ckpt${idx}.ckpt \
--outdir=./outputs_ms_1101 &
done