-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpoly_gt_saver.py
234 lines (133 loc) · 6.2 KB
/
poly_gt_saver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import logging
import os
from datetime import datetime
from argparse import ArgumentParser
from src.utils.configs import get_default_configuration_argo, load_config
from src.data import data_factory
import numpy as np
image_mean=[0.485, 0.456, 0.406]
image_std=[0.229, 0.224, 0.225]
def train(dataloader,dataset, args, config):
poly_dict = dict()
total_passed_batch = 0
for i, batch in enumerate(dataloader):
if batch[-1]:
logging.error('PASSED BATCH')
total_passed_batch = total_passed_batch + 1
continue
seq_images, targets, _ = batch
logging.error('SAMPLE ' + str(i) + ' TOKEN : ' + targets[0]['scene_token'])
poly_dict[targets[0]['scene_token']+'_'+str(targets[0]['sample_token'])] = [np.copy(targets[0]['blob_mat'].numpy()),np.copy(targets[0]['poly_centers'].numpy()),np.copy(targets[0]['poly_one_hots'].numpy()),np.copy(targets[0]['blob_ids'].numpy())]
file_name = args.dataset_name
if args.train_split:
file_name = file_name + '_train_'
else:
file_name = file_name + '_val_'
file_name = file_name + 'gt_polygon_dict_' + str(args.interval_start)+'_' + str(args.interval_end) + '.npy'
np.save(os.path.join(config.poly_base_path, file_name),poly_dict)
return
# Load the configuration for this experiment
def get_configuration(args):
# Load config defaults
config = get_default_configuration_argo()
# Load dataset options
logging.error('DGX OPTION ' + str(args.dgx))
if args.dgx:
logging.error('IT IS IN DGX')
config.merge_from_file( '/cluster/home/cany/TPLR/configs/euler.yml')
return config
def create_experiment(config, resume=None):
# Restore an existing experiment if a directory is specified
if resume is not None:
print("\n==> Restoring experiment from directory:\n" + resume)
logdir = resume
else:
# name = 'maxi_poly_loss_split_'+str(abs_bev) +'_big'+str(True) +'_refineTrue'
name = 'poly_saver'
logdir = os.path.join(os.path.expandvars(config.logdir), name)
print("\n==> Creating new experiment in directory:\n" + logdir)
os.makedirs(logdir,exist_ok=True)
os.makedirs(os.path.join(config.logdir,'val_images'),exist_ok=True)
os.makedirs(os.path.join(config.logdir,'train_images'),exist_ok=True)
# Display the config options on-screen
print(config.dump())
# Save the current config
with open(os.path.join(logdir, 'config.yml'), 'w') as f:
f.write(config.dump())
return logdir
dataset_name = 'nuscenes' # argoverse
mini_version = False
poly_pretrain = True
do_objects = False
euler=False
num_object_classes = 8
base_dir = '/cluster/work/cvl/cany/TPLR'
model_name = 'tplr'
def main():
parser = ArgumentParser()
parser.add_argument('--dgx', type=bool, default=euler,
help='whether it is on dgx')
parser.add_argument('--resume', default=base_dir+'/'+model_name,
help='path to an experiment to resume')
parser.add_argument('--only_big', type=bool, default=False,
help='whether it is on dgx')
parser.add_argument('--estimate_object_on_image', type=bool, default=False,
help='whether it is on dgx')
parser.add_argument('--objects', type=bool, default=False,
help='whether estimate objects')
parser.add_argument('--num_object_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--num_pedestrian_queries', default=50, type=int,
help="Number of query slots")
parser.add_argument('--num_cycle_queries', default=50, type=int,
help="Number of query slots")
parser.add_argument('--num_object_classes', default=num_object_classes, type=int,
help="Num object classes")
parser.add_argument('--num_spline_points', default=3, type=int,
help="Num object classes")
# dataset parameters
parser.add_argument('--num_workers', default=2, type=int)
'''
SET THE DATASET NAME
'''
parser.add_argument('--dataset_name', default=dataset_name, type=str)
'''
SET THE INTERVAL HERE
'''
# PRETRAIN SAVER INTERVAL
parser.add_argument('--interval_start', default=60, type=int,
help='number of distributed processes')
parser.add_argument('--interval_end', default=65, type=int,
help='number of distributed processes')
'''
SET THE SPLIT TO WORK ON
True : TRAIN, False : EVAL
'''
parser.add_argument('--train_split', type=bool, default=True,
help='whether it is on dgx')
args = parser.parse_args()
print('GOT ARGS ')
logging.error(str(args))
logging.error('START ' + str(args.interval_start) + ' END ' + str(args.interval_end))
# Load configuration
config = get_configuration(args)
# Create a directory for the experiment
logdir = create_experiment(config, args.resume)
logging.error('LOGDIR ' + str(logdir))
config.save_logdir = logdir
config.n_control_points = args.num_spline_points
config.poly_pretrain = poly_pretrain
config.freeze()
if args.dataset_name == 'nuscenes':
train_loader,train_dataset, val_loader,val_dataset = data_factory.build_nuscenes_dataloader(config, args, val=(not args.train_split), gt_polygon_extraction=True)
elif args.dataset_name == 'argoverse':
train_loader,train_dataset, val_loader,val_dataset = data_factory.build_argoverse_dataloader(config, args, val=(not args.train_split), gt_polygon_extraction=True)
else:
logging.error('DATASET ' + str(args.dataset_name) + ' is not supported')
if args.train_split:
train(train_loader, train_dataset,args, config)
else:
train(val_loader, val_dataset,args, config)
exit()
if __name__ == '__main__':
main()