-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
245 lines (206 loc) · 8.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from torch.nn.functional import normalize
torch.manual_seed(1234)
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
EPOCHS = 50
LR = 3e-4
BATCH_SIZE = 13
NUM_WORKERS = 2
BETA1 = 0.5
BETA2 = 0.999
SAVE_MODEL = True
LOAD_MODEL = True
LOAD_INITIAL_MODEL = True
NET1_CHK = "./net1.pth.tar"
NET2_CHK = "./net2.pth.tar"
NETCAT_CHK = "./netcat.pth.tar"
TEST = True
class WaveDataset(Dataset):
def __init__(self, start=0, end=195):
super().__init__()
self.input = []
self.output = []
simfilenames = np.loadtxt('training_labels.csv', dtype=str, delimiter=',', usecols=(0, 1))
print("=> Loading Data")
for simfilename in tqdm(simfilenames[start:end]):
simdata = np.load("./data/"+simfilename[0]+".npy", mmap_mode='r+')
simdata = np.delete(simdata, 2, 0)
simdata = np.delete(simdata, range(1925, 4096), 1)
simdatatorch = torch.from_numpy(simdata)
simdatatorchnorm = normalize(simdatatorch)
self.input.append(simdatatorchnorm)
randomdata = torch.rand(1)
if simfilename[1] == '0': self.output.append(randomdata if randomdata <= 0.5 else 1-randomdata)
else: self.output.append(randomdata if randomdata >= 0.5 else 1-randomdata)
def __len__(self):
return len(self.input)
def __getitem__(self, index):
return {'feature': self.input[index], 'target': self.output[index]}
class Convolute(nn.Module):
def __init__(self, in_filters, out_filters, kernel_size, dropout=0.0, maxpool=0):
super().__init__()
self.conv = nn.Sequential(
nn.Conv1d(in_filters, out_filters, kernel_size),
nn.BatchNorm1d(out_filters),
nn.ReLU()
)
if dropout!=0: self.conv.append(nn.Dropout(dropout))
if maxpool!=0: self.conv.append(nn.MaxPool1d(maxpool))
def forward(self, x):
return self.conv(x)
class DNF(nn.Module):
def __init__(self, in_filters, out_filters, do_transpose=False, do_flatten=False):
super().__init__()
self.do_transpose = do_transpose
self.dnf = nn.Sequential(nn.Linear(in_filters, out_filters))
if do_flatten: self.dnf.append(nn.Flatten())
def forward(self, x):
if self.do_transpose: x = torch.transpose(x, 2, 1)
return self.dnf(x)
class ANN(nn.Module):
def __init__(self, in_filters, hidden_filters=50):
super().__init__()
self.ann = nn.Sequential(
nn.Linear(in_filters, hidden_filters),
nn.ReLU(),
nn.Linear(hidden_filters, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.ann(x)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Convolute(2, 576, 11)
self.conv2 = Convolute(576, 484, 11, 0.3, 4)
self.conv3 = Convolute(484, 400, 5)
self.conv4 = Convolute(400, 324, 5, 0.2)
self.conv5 = DNF(324, 256, True, True)
self.conv6 = DNF(119808, 150)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
return self.conv6(x)
class NetCat(nn.Module):
def __init__(self):
super().__init__()
self.ann1 = ANN(300)
def forward(self, x):
return self.ann1(x)
def save_checkpoint(model, optim, filename="/checkpoint.path.tar"):
print("=> Saving Checkpoint")
checkpoint = {
"model_state": model.state_dict(),
"optim_state": optim.state_dict()
}
torch.save(checkpoint, filename)
def load_checkpoint(checkpoint_file, model, optim, lr):
print("=> Loading Checkpoint")
checkpoint = torch.load(checkpoint_file, map_location=DEVICE)
model.load_state_dict(checkpoint["model_state"])
optim.load_state_dict(checkpoint["optim_state"])
for group in optim.param_groups:
group["lr"] = lr
def train(data_loader, net1, net2, netcat, net1_scaler, net2_scaler, netcat_scaler, net1_optim, net2_optim, netcat_optim, loss_function):
losses1 = []
losses2 = []
lossescat = []
data_loop = tqdm(data_loader, leave=True)
net1.zero_grad()
net2.zero_grad()
netcat.zero_grad()
for data in data_loop:
features, targets = data['feature'].to(DEVICE, dtype=torch.float), data['target'].to(DEVICE, dtype=torch.float)
dense1 = net1(features)
dense2 = net2(features)
dense = torch.cat([dense1, dense2], dim = 1)
preds = netcat(dense)
losscat = loss_function(preds, targets)
netcat.zero_grad()
netcat_scaler.scale(losscat).backward()
netcat_scaler.step(netcat_optim)
netcat_scaler.update()
dense1 = net1(features)
dense2 = net2(features)
dense = torch.cat([dense1, dense2], dim = 1)
preds = netcat(dense)
loss2 = loss_function(preds, targets)
net2.zero_grad()
net2_scaler.scale(loss2).backward()
net2_scaler.step(net2_optim)
net2_scaler.update()
dense1 = net1(features)
dense2 = net2(features)
dense = torch.cat([dense1, dense2], dim = 1)
preds = netcat(dense)
loss1 = loss_function(preds, targets)
net1.zero_grad()
net1_scaler.scale(loss1).backward()
net1_scaler.step(net1_optim)
net1_scaler.update()
losses1.append(loss1.data)
losses2.append(loss2.data)
lossescat.append(losscat.data)
loss_avg1 = torch.mean(torch.FloatTensor(losses1))
loss_avg2 = torch.mean(torch.FloatTensor(losses2))
loss_avgcat = torch.mean(torch.FloatTensor(lossescat))
print(f'Average Loss1 this epoch = {loss_avg1}')
print(f'Average Loss2 this epoch = {loss_avg2}')
print(f'Average LossCat this epoch = {loss_avgcat}')
return loss_avg1, loss_avg2, loss_avgcat
def test(net1, net2, netcat, loss_function):
test_data = WaveDataset(196, 260)
test_loader = DataLoader(test_data, batch_size=1, shuffle=False)
RMSEs = []
for data in test_loader:
test_features, test_targets = data['feature'].to(DEVICE, dtype=torch.float), data['target'].to(DEVICE, dtype=torch.float)
dense1 = net1(test_features)
dense2 = net2(test_features)
dense = torch.cat([dense1, dense2], dim = 1)
preds = netcat(dense)
RMSE = loss_function(preds, test_targets)
print('Prediction =', round(preds[0].item()*90, 2), 'Actual =', round(test_targets[0].item()*90, 2))
RMSEs.append(RMSE.data)
RMSE_avg = torch.mean(torch.FloatTensor(RMSEs))
print(f'Average RMSE = {RMSE_avg}')
def main():
net1, net2, netcat = Net(), Net(), NetCat()
net1, net2, netcat = net1.to(DEVICE), net2.to(DEVICE), netcat.to(DEVICE)
net1_scaler, net2_scaler, netcat_scaler = torch.cuda.amp.GradScaler(), torch.cuda.amp.GradScaler(), torch.cuda.amp.GradScaler()
net1_optim = torch.optim.Adam(net1.parameters(), lr=LR, betas=(BETA1, BETA2))
net2_optim = torch.optim.Adam(net2.parameters(), lr=LR, betas=(BETA1, BETA2))
netcat_optim = torch.optim.Adam(netcat.parameters(), lr=LR, betas=(BETA1, BETA2))
loss_function = nn.MSELoss()
train_data = WaveDataset()
train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
if LOAD_INITIAL_MODEL:
load_checkpoint(NET1_CHK, net1, net1_optim, LR)
load_checkpoint(NET2_CHK, net2, net2_optim, LR)
load_checkpoint(NETCAT_CHK, netcat, netcat_optim, LR)
best_loss_avgs = [10000, 10000, 10000]
for epoch in range(EPOCHS):
print(f'Epoch count = {epoch+1}')
loss_avg1, loss_avg2, loss_avgcat = train(train_loader, net1, net2, netcat, net1_scaler, net2_scaler, netcat_scaler, net1_optim, net2_optim, netcat_optim, loss_function)
if loss_avg1 < best_loss_avgs[0] and SAVE_MODEL:
best_loss_avgs[0] = loss_avg1
save_checkpoint(net1, net1_optim, filename=NET1_CHK)
if loss_avg2 < best_loss_avgs[1] and SAVE_MODEL:
best_loss_avgs[1] = loss_avg2
save_checkpoint(net2, net2_optim, filename=NET2_CHK)
if loss_avgcat < best_loss_avgs[2] and SAVE_MODEL:
best_loss_avgs[2] = loss_avgcat
save_checkpoint(netcat, netcat_optim, filename=NETCAT_CHK)
if LOAD_MODEL and (epoch+1)%10 == 0:
load_checkpoint(NET1_CHK, net1, net1_optim, lr=LR)
load_checkpoint(NET2_CHK, net2, net2_optim, lr=LR)
load_checkpoint(NETCAT_CHK, netcat, netcat_optim, lr=LR)
if TEST: test(net1, net2, netcat, loss_function)
if __name__ == "__main__":
main()