forked from RedisLabs/memtier_benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshard_connection.cpp
653 lines (538 loc) · 19.5 KB
/
shard_connection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
* Copyright (C) 2011-2017 Redis Labs Ltd.
*
* This file is part of memtier_benchmark.
*
* memtier_benchmark is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* memtier_benchmark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with memtier_benchmark. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_NETINET_TCP_H
#include <netinet/tcp.h>
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#endif
#include "shard_connection.h"
#include "obj_gen.h"
#include "memtier_benchmark.h"
#include "connections_manager.h"
#include "event2/bufferevent.h"
#ifdef USE_TLS
#include <openssl/ssl.h>
#include <openssl/err.h>
#include "event2/bufferevent_ssl.h"
#endif
void cluster_client_read_handler(bufferevent *bev, void *ctx)
{
shard_connection *sc = (shard_connection *) ctx;
assert(sc != NULL);
sc->process_response();
}
void cluster_client_event_handler(bufferevent *bev, short events, void *ctx)
{
shard_connection *sc = (shard_connection *) ctx;
assert(sc != NULL);
sc->handle_event(events);
}
request::request(request_type type, unsigned int size, struct timeval* sent_time, unsigned int keys)
: m_type(type), m_size(size), m_keys(keys)
{
if (sent_time != NULL)
m_sent_time = *sent_time;
else {
gettimeofday(&m_sent_time, NULL);
}
}
arbitrary_request::arbitrary_request(size_t request_index, request_type type,
unsigned int size, struct timeval* sent_time) :
request(type, size, sent_time, 1),
index(request_index) {
}
verify_request::verify_request(request_type type,
unsigned int size,
struct timeval* sent_time,
unsigned int keys,
const char *key,
unsigned int key_len,
const char *value,
unsigned int value_len) :
request(type, size, sent_time, keys),
m_key(NULL), m_key_len(0),
m_value(NULL), m_value_len(0)
{
m_key_len = key_len;
m_key = (char *)malloc(key_len);
memcpy(m_key, key, m_key_len);
m_value_len = value_len;
m_value = (char *)malloc(value_len);
memcpy(m_value, value, m_value_len);
}
verify_request::~verify_request(void)
{
if (m_key != NULL) {
free((void *) m_key);
m_key = NULL;
}
if (m_value != NULL) {
free((void *) m_value);
m_value = NULL;
}
}
shard_connection::shard_connection(unsigned int id, connections_manager* conns_man, benchmark_config* config,
struct event_base* event_base, abstract_protocol* abs_protocol) :
m_address(NULL), m_port(NULL), m_unix_sockaddr(NULL),
m_bev(NULL), m_pending_resp(0), m_connection_state(conn_disconnected),
m_hello(setup_done), m_authentication(setup_done), m_db_selection(setup_done), m_cluster_slots(setup_done) {
m_id = id;
m_conns_manager = conns_man;
m_config = config;
m_event_base = event_base;
if (m_config->unix_socket) {
m_unix_sockaddr = (struct sockaddr_un *) malloc(sizeof(struct sockaddr_un));
assert(m_unix_sockaddr != NULL);
m_unix_sockaddr->sun_family = AF_UNIX;
strncpy(m_unix_sockaddr->sun_path, m_config->unix_socket, sizeof(m_unix_sockaddr->sun_path)-1);
m_unix_sockaddr->sun_path[sizeof(m_unix_sockaddr->sun_path)-1] = '\0';
}
m_protocol = abs_protocol->clone();
assert(m_protocol != NULL);
m_pipeline = new std::queue<request *>;
assert(m_pipeline != NULL);
}
shard_connection::~shard_connection() {
if (m_address != NULL) {
free(m_address);
m_address = NULL;
}
if (m_port != NULL) {
free(m_port);
m_port = NULL;
}
if (m_unix_sockaddr != NULL) {
free(m_unix_sockaddr);
m_unix_sockaddr = NULL;
}
if (m_bev != NULL) {
bufferevent_free(m_bev);
m_bev = NULL;
}
if (m_protocol != NULL) {
delete m_protocol;
m_protocol = NULL;
}
if (m_pipeline != NULL) {
delete m_pipeline;
m_pipeline = NULL;
}
}
void shard_connection::setup_event(int sockfd) {
if (m_bev) {
bufferevent_free(m_bev);
}
#ifdef USE_TLS
if (m_config->openssl_ctx) {
SSL *ctx = SSL_new(m_config->openssl_ctx);
assert(ctx != NULL);
if (m_config->tls_sni) {
SSL_set_tlsext_host_name(ctx, m_config->tls_sni);
}
m_bev = bufferevent_openssl_socket_new(m_event_base,
sockfd, ctx, BUFFEREVENT_SSL_CONNECTING, BEV_OPT_CLOSE_ON_FREE);
} else {
#endif
m_bev = bufferevent_socket_new(m_event_base, sockfd, BEV_OPT_CLOSE_ON_FREE);
#ifdef USE_TLS
}
#endif
assert(m_bev != NULL);
bufferevent_setcb(m_bev, cluster_client_read_handler,
NULL, cluster_client_event_handler, (void *)this);
m_protocol->set_buffers(bufferevent_get_input(m_bev), bufferevent_get_output(m_bev));
}
int shard_connection::setup_socket(struct connect_info* addr) {
int flags;
int sockfd;
if (m_unix_sockaddr != NULL) {
sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sockfd < 0) {
return -1;
}
} else {
// initialize socket
sockfd = socket(addr->ci_family, addr->ci_socktype, addr->ci_protocol);
if (sockfd < 0) {
return -1;
}
// configure socket behavior
struct linger ling = {0, 0};
int flags = 1;
int error = setsockopt(sockfd, SOL_SOCKET, SO_KEEPALIVE, (void *) &flags, sizeof(flags));
assert(error == 0);
error = setsockopt(sockfd, SOL_SOCKET, SO_LINGER, (void *) &ling, sizeof(ling));
assert(error == 0);
error = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (void *) &flags, sizeof(flags));
assert(error == 0);
}
// set non-blocking behavior
flags = 1;
if ((flags = fcntl(sockfd, F_GETFL, 0)) < 0 ||
fcntl(sockfd, F_SETFL, flags | O_NONBLOCK) < 0) {
close(sockfd);
return -1;
}
return sockfd;
}
int shard_connection::connect(struct connect_info* addr) {
// set required setup commands
m_authentication = m_config->authenticate ? setup_none : setup_done;
m_db_selection = m_config->select_db ? setup_none : setup_done;
m_hello = (m_config->protocol == PROTOCOL_RESP2 || m_config->protocol == PROTOCOL_RESP3) ? setup_none : setup_done;
// setup socket
int sockfd = setup_socket(addr);
if (sockfd < 0) {
fprintf(stderr, "Failed to setup socket: %s", strerror(errno));
return -1;
}
// set up bufferevent
setup_event(sockfd);
// set readable id
set_readable_id();
// call connect
m_connection_state = conn_in_progress;
if (bufferevent_socket_connect(m_bev,
m_unix_sockaddr ? (struct sockaddr *) m_unix_sockaddr : addr->ci_addr,
m_unix_sockaddr ? sizeof(struct sockaddr_un) : addr->ci_addrlen) == -1) {
disconnect();
benchmark_error_log("connect failed, error = %s\n", strerror(errno));
return -1;
}
return 0;
}
void shard_connection::disconnect() {
if (m_bev) {
bufferevent_free(m_bev);
}
m_bev = NULL;
m_connection_state = conn_disconnected;
// by default no need to send any setup request
m_authentication = setup_done;
m_db_selection = setup_done;
m_cluster_slots = setup_done;
m_hello = setup_done;
}
void shard_connection::set_address_port(const char* address, const char* port) {
if (m_address != NULL) {
free(m_address);
}
m_address = strdup(address);
if (m_port != NULL) {
free(m_port);
}
m_port = strdup(port);
}
void shard_connection::set_readable_id() {
if (m_unix_sockaddr != NULL) {
m_readable_id.assign(m_config->unix_socket);
} else {
m_readable_id.assign(m_address);
m_readable_id.append(":");
m_readable_id.append(m_port);
}
}
const char* shard_connection::get_readable_id() {
return m_readable_id.c_str();
}
request* shard_connection::pop_req() {
request* req = m_pipeline->front();
m_pipeline->pop();
m_pending_resp--;
assert(m_pending_resp >= 0);
return req;
}
void shard_connection::push_req(request* req) {
m_pipeline->push(req);
m_pending_resp++;
}
bool shard_connection::is_conn_setup_done() {
return m_authentication == setup_done &&
m_db_selection == setup_done &&
m_cluster_slots == setup_done &&
m_hello == setup_done;
}
void shard_connection::send_conn_setup_commands(struct timeval timestamp) {
if (m_authentication == setup_none) {
benchmark_debug_log("sending authentication command.\n");
m_protocol->authenticate(m_config->authenticate);
push_req(new request(rt_auth, 0, ×tamp, 0));
m_authentication = setup_sent;
}
if (m_db_selection == setup_none) {
benchmark_debug_log("sending db selection command.\n");
m_protocol->select_db(m_config->select_db);
push_req(new request(rt_select_db, 0, ×tamp, 0));
m_db_selection = setup_sent;
}
if (m_hello == setup_none) {
benchmark_debug_log("sending HELLO command.\n");
m_protocol->configure_protocol(m_config->protocol);
push_req(new request(rt_hello, 0, ×tamp, 0));
m_hello = setup_sent;
}
if (m_cluster_slots == setup_none) {
benchmark_debug_log("sending cluster slots command.\n");
// in case we send CLUSTER SLOTS command, we need to keep the response to parse it
m_protocol->set_keep_value(true);
m_protocol->write_command_cluster_slots();
push_req(new request(rt_cluster_slots, 0, ×tamp, 0));
m_cluster_slots = setup_sent;
}
}
void shard_connection::process_response(void)
{
int ret;
bool responses_handled = false;
struct timeval now;
gettimeofday(&now, NULL);
while ((ret = m_protocol->parse_response()) > 0) {
bool error = false;
protocol_response *r = m_protocol->get_response();
request* req = pop_req();
switch (req->m_type)
{
case rt_auth:
if (r->is_error()) {
benchmark_error_log("error: authentication failed [%s]\n", r->get_status());
error = true;
} else {
m_authentication = setup_done;
benchmark_debug_log("authentication successful.\n");
}
break;
case rt_select_db:
if (strcmp(r->get_status(), "+OK") != 0) {
benchmark_error_log("database selection failed.\n");
error = true;
} else {
benchmark_debug_log("database selection successful.\n");
m_db_selection = setup_done;
}
break;
case rt_cluster_slots:
if (r->get_mbulk_value() == NULL || r->get_mbulk_value()->mbulks_elements.size() == 0) {
benchmark_error_log("cluster slot failed.\n");
error = true;
} else {
// parse response
m_conns_manager->handle_cluster_slots(r);
m_protocol->set_keep_value(false);
m_cluster_slots = setup_done;
benchmark_debug_log("cluster slot command successful\n");
}
break;
case rt_hello:
if (r->is_error()) {
benchmark_error_log("error: HELLO failed [%s]\n", r->get_status());
error = true;
} else {
m_hello = setup_done;
benchmark_debug_log("HELLO successful.\n");
}
break;
default:
benchmark_debug_log("server %s: handled response (first line): %s, %d hits, %d misses\n",
get_readable_id(),
r->get_status(),
r->get_hits(),
req->m_keys - r->get_hits());
m_conns_manager->handle_response(m_id, now, req, r);
m_conns_manager->inc_reqs_processed();
responses_handled = true;
break;
}
delete req;
if (error) {
return;
}
}
if (ret == -1) {
benchmark_error_log("error: response parsing failed.\n");
}
if (m_config->reconnect_interval > 0 && responses_handled) {
if ((m_config->requests != m_conns_manager->get_reqs_processed()) && ((m_conns_manager->get_reqs_processed() % m_config->reconnect_interval) == 0)) {
assert(m_pipeline->size() == 0);
benchmark_debug_log("reconnecting, m_reqs_processed = %u\n", m_conns_manager->get_reqs_processed());
// client manage connection & disconnection of shard
m_conns_manager->disconnect();
ret = m_conns_manager->connect();
assert(ret == 0);
return;
}
}
fill_pipeline();
// update events
if (m_bev != NULL) {
// no pending response (nothing to read) and output buffer empty (nothing to write)
if ((m_pending_resp == 0) && (evbuffer_get_length(bufferevent_get_output(m_bev)) == 0)) {
bufferevent_disable(m_bev, EV_WRITE|EV_READ);
}
}
if (m_conns_manager->finished()) {
m_conns_manager->set_end_time();
}
}
void shard_connection::process_first_request() {
m_conns_manager->set_start_time();
fill_pipeline();
}
void shard_connection::fill_pipeline(void)
{
struct timeval now;
gettimeofday(&now, NULL);
while (!m_conns_manager->finished() && m_pipeline->size() < m_config->pipeline) {
if (!is_conn_setup_done()) {
send_conn_setup_commands(now);
return;
}
// don't exceed requests
if (m_conns_manager->hold_pipeline(m_id)) {
break;
}
// client manage requests logic
m_conns_manager->create_request(now, m_id);
}
}
void shard_connection::handle_event(short events)
{
// connect() returning to us? normally we expect EV_WRITE, but for UNIX domain
// sockets we workaround since connect() returned immediately, but we don't want
// to do any I/O from the client::connect() call...
if ((get_connection_state() == conn_in_progress) && (events & BEV_EVENT_CONNECTED)) {
m_connection_state = conn_connected;
bufferevent_enable(m_bev, EV_READ|EV_WRITE);
if (!m_conns_manager->get_reqs_processed()) {
process_first_request();
} else {
benchmark_debug_log("reconnection complete, proceeding with test\n");
fill_pipeline();
}
return;
}
if (events & BEV_EVENT_ERROR) {
bool ssl_error = false;
#ifdef USE_TLS
unsigned long sslerr;
while ((sslerr = bufferevent_get_openssl_error(m_bev))) {
ssl_error = true;
benchmark_error_log("TLS connection error: %s\n",
ERR_reason_error_string(sslerr));
}
#endif
if (!ssl_error && errno) {
benchmark_error_log("Connection error: %s\n", strerror(errno));
}
disconnect();
return;
}
if (events & BEV_EVENT_EOF) {
benchmark_error_log("connection dropped.\n");
disconnect();
return;
}
}
void shard_connection::send_wait_command(struct timeval* sent_time,
unsigned int num_slaves, unsigned int timeout) {
int cmd_size = 0;
benchmark_debug_log("WAIT num_slaves=%u timeout=%u\n", num_slaves, timeout);
cmd_size = m_protocol->write_command_wait(num_slaves, timeout);
push_req(new request(rt_wait, cmd_size, sent_time, 0));
}
void shard_connection::send_set_command(struct timeval* sent_time, const char *key, int key_len,
const char *value, int value_len, int expiry, unsigned int offset) {
int cmd_size = 0;
benchmark_debug_log("server %s: SET key=[%.*s] value_len=%u expiry=%u\n",
get_readable_id(), key_len, key, value_len, expiry);
cmd_size = m_protocol->write_command_set(key, key_len, value, value_len,
expiry, offset);
push_req(new request(rt_set, cmd_size, sent_time, 1));
}
void shard_connection::send_get_command(struct timeval* sent_time,
const char *key, int key_len, unsigned int offset) {
int cmd_size = 0;
benchmark_debug_log("server %s: GET key=[%.*s]\n", get_readable_id(), key_len, key);
cmd_size = m_protocol->write_command_get(key, key_len, offset);
push_req(new request(rt_get, cmd_size, sent_time, 1));
}
void shard_connection::send_mget_command(struct timeval* sent_time, const keylist* key_list) {
int cmd_size = 0;
const char *first_key, *last_key;
unsigned int first_key_len, last_key_len;
first_key = key_list->get_key(0, &first_key_len);
last_key = key_list->get_key(key_list->get_keys_count()-1, &last_key_len);
benchmark_debug_log("MGET %d keys [%.*s] .. [%.*s]\n",
key_list->get_keys_count(), first_key_len, first_key, last_key_len, last_key);
cmd_size = m_protocol->write_command_multi_get(key_list);
push_req(new request(rt_get, cmd_size, sent_time, key_list->get_keys_count()));
}
void shard_connection::send_verify_get_command(struct timeval* sent_time, const char *key, int key_len,
const char *value, int value_len, int expiry, unsigned int offset) {
int cmd_size = 0;
benchmark_debug_log("GET key=[%.*s] value_len=%u expiry=%u\n",
key_len, key, value_len, expiry);
cmd_size = m_protocol->write_command_get(key, key_len, offset);
push_req(new verify_request(rt_get, cmd_size, sent_time, 1, key, key_len, value, value_len));
}
/*
* arbitrary command:
*
* we send the arbitrary command in several iterations, where on each iteration
* different type of argument can be sent (const/randomized).
*
* since we do it on several iterations, we call to arbitrary_command_end() to mark that
* all the command sent
*/
int shard_connection::send_arbitrary_command(const command_arg *arg) {
int cmd_size = 0;
cmd_size = m_protocol->write_arbitrary_command(arg);
return cmd_size;
}
int shard_connection::send_arbitrary_command(const command_arg *arg, const char *val, int val_len) {
int cmd_size = 0;
if (arg->type == key_type) {
benchmark_debug_log("key: value[%.*s]\n", val_len, val);
} else {
benchmark_debug_log("data: value_len=%u\n", val_len);
}
cmd_size = m_protocol->write_arbitrary_command(val, val_len);
return cmd_size;
}
void shard_connection::send_arbitrary_command_end(size_t command_index, struct timeval* sent_time, int cmd_size) {
push_req(new arbitrary_request(command_index, rt_arbitrary, cmd_size, sent_time));
}