-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
238 lines (206 loc) · 10.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
from pathlib import Path
import numpy as np
import torch
import torchvision
from PIL import Image
from PIL.Image import Resampling
from torch.utils.data import Dataset
from torchvision import transforms
from templates import imagenet_style_templates_small, imagenet_templates_base
def preprocess(image, scale, resample):
image = image.resize((scale, scale), resample=resample)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
return image
def collate_fn(examples, with_prior_preservation):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
mask = [example["mask"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
mask += [example["class_mask"] for example in examples]
torch.save(examples, 'example_cd')
input_ids = torch.cat(input_ids, dim=0)
pixel_values = torch.stack(pixel_values)
mask = torch.stack(mask)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
mask = mask.to(memory_format=torch.contiguous_format).float()
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
"mask": mask.unsqueeze(1)
}
return batch
def is_image(str_path):
return str_path.endswith(".jpg") or str_path.endswith(".png") or str_path.endswith("jpeg")
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
flip_p=0.5,
set="train",
placeholder_token="*",
center_crop=False,
with_prior_preservation=False,
random_rescaling=False,
concepts_list=None,
num_class_images=200,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.flip_p = flip_p
self.with_prior_preservation = with_prior_preservation
self.random_rescaling = random_rescaling
if with_prior_preservation:
self.instance_prompts = []
self.instance_images_path = []
self.class_images_path = []
for concept in concepts_list:
self.instance_prompts.append(concept["instance_prompt"])
inst_img_path = sorted([x for x in Path(concept["instance_data_dir"]).iterdir() if is_image(str(x))])
self.instance_images_path.extend(inst_img_path)
class_data_root = Path(concept['class_data_dir'])
if os.path.isdir(class_data_root):
class_images_path = list(class_data_root.iterdir())
class_prompt = [concept["class_prompt"] for _ in range(len(class_images_path))]
else:
with open(class_data_root, "r") as f:
class_images_path = f.read().splitlines()
with open(concept["class_prompt"], "r") as f:
class_prompt = f.read().splitlines()
class_img_path = [(x, y) for (x, y) in zip(class_images_path, class_prompt)]
self.class_images_path.extend(class_img_path[:num_class_images])
self.num_class_images = len(self.class_images_path)
else:
self.instance_images_path = sorted([os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root) if is_image(file_path)])
self.num_instance_images = len(self.instance_images_path)
self._length = self.num_instance_images
if set == "train":
self._length = self.num_instance_images * repeats
self.interpolation = Resampling.BILINEAR if with_prior_preservation else Resampling.BICUBIC
if not random_rescaling:
# preprocess all images
self.images = []
for image_path in self.instance_images_path:
image = Image.open(image_path)
if not image.mode == "RGB":
image = image.convert("RGB")
# default to score-sde preprocessing
if center_crop:
image = torchvision.transforms.functional.center_crop(image, min(image.size))
resized_image = image.resize((self.size, self.size), resample=self.interpolation)
torch_image = torchvision.transforms.functional.to_tensor(resized_image)
torch_image = torch_image * 2 - 1
self.images.append(torch_image)
if learnable_property == "style":
self.templates = imagenet_style_templates_small
elif learnable_property == "object":
self.templates = imagenet_templates_base
else:
raise ValueError(f"{learnable_property} is not supported")
formatted_templates = [template.format(self.placeholder_token) for template in self.templates]
self.tokenized_templates = self.tokenizer(formatted_templates,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
self.image_transforms = transforms.Compose(
[
self.flip_transform,
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
if self.with_prior_preservation:
instance_image = self.instance_images_path[i % self.num_instance_images]
instance_prompt = self.instance_prompts[0]
instance_image = Image.open(instance_image)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
instance_image = self.flip_transform(instance_image)
if self.random_rescaling:
##############################################################################
#### apply resize augmentation and create a valid image region mask ##########
##############################################################################
if torch.randint(0, 3, (1,)) < 2:
random_scale = torch.randint(self.size // 3, self.size + 1, (1,)).item()
else:
random_scale = torch.randint(int(1.2 * self.size), int(1.4 * self.size), (1,)).item()
if random_scale % 2 == 1:
random_scale += 1
if random_scale < 0.6 * self.size:
add_to_caption = ["a far away ", "very small "][torch.randint(0, 2, (1,))]
instance_prompt = add_to_caption + instance_prompt
cx = torch.randint(random_scale // 2, self.size - random_scale // 2 + 1, (1,))
cy = torch.randint(random_scale // 2, self.size - random_scale // 2 + 1, (1,))
instance_image1 = preprocess(instance_image, random_scale, self.interpolation)
instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32)
instance_image[cx - random_scale // 2: cx + random_scale // 2,
cy - random_scale // 2: cy + random_scale // 2, :] = instance_image1
mask = np.zeros((self.size // 8, self.size // 8))
mask[(cx - random_scale // 2) // 8 + 1: (cx + random_scale // 2) // 8 - 1,
(cy - random_scale // 2) // 8 + 1: (cy + random_scale // 2) // 8 - 1] = 1.
elif random_scale > self.size:
add_to_caption = ["zoomed in ", "close up "][torch.randint(0, 2, (1,))]
instance_prompt = add_to_caption + instance_prompt
cx = torch.randint(self.size // 2, random_scale - self.size // 2 + 1, (1,))
cy = torch.randint(self.size // 2, random_scale - self.size // 2 + 1, (1,))
instance_image = preprocess(instance_image, random_scale, self.interpolation)
instance_image = instance_image[cx - self.size // 2: cx + self.size // 2,
cy - self.size // 2: cy + self.size // 2, :]
mask = np.ones((self.size // 8, self.size // 8))
else:
instance_image = preprocess(instance_image, self.size, self.interpolation)
mask = np.ones((self.size // 8, self.size // 8))
else:
instance_image = preprocess(instance_image, self.size, self.interpolation)
mask = np.ones((self.size // 8, self.size // 8))
example["mask"] = torch.from_numpy(mask)
example["class_mask"] = torch.ones_like(example["mask"])
example["instance_images"] = torch.from_numpy(instance_image).permute(2, 0, 1)
example["instance_prompt_ids"] = self.tokenizer(
instance_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
class_image, class_prompt = self.class_images_path[i % self.num_class_images]
class_image = Image.open(class_image)
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
class_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
else:
image = self.images[i % self.num_instance_images]
tokenized_template = self.tokenized_templates[i % len(self.tokenized_templates)]
example["input_ids"] = tokenized_template
example["pixel_values"] = self.flip_transform(image)
return example