-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtinyimages_prediction.py
209 lines (160 loc) · 7.02 KB
/
tinyimages_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
Select unlabeled data from TinyImages using the trained data sourcing model
"""
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
import logging
import os
import pickle
from utils import get_model, load_cifar10_keywords
import argparse
import numpy as np
from torchvision import transforms
import torch
from torch.nn import DataParallel
from torch.utils.data import DataLoader, Dataset
import time
import pdb
parser = argparse.ArgumentParser(
description='Apply pretrained network on entire Tiny Images dataset')
# Model details
parser.add_argument('--model_path', type=str,
help='path of checkpoint to pretrained model')
parser.add_argument('--model', '-m', default='wrn-28-10', type=str,
help='name of the model')
# Directory details
parser.add_argument('--data_dir', default='data/', type=str,
help='directory where datasets are located')
parser.add_argument('--output_dir', type=str,
help='directory where unlabeled dataset is to be located')
parser.add_argument('--output_filename', type=str,
help='Name of the pickle file containing unlabeled data')
# Unlabeled data details
parser.add_argument('--num_unlabeled', type=int, default=50000,
help='Number of unlabeled images in each class')
parser.add_argument('--l2_cutoff', type=float, default=2000/255,
help='l2 distance cutoff to choose valid indices')
# Running details
parser.add_argument('--batch_size', type=int, default=1000, metavar='N',
help='batch_size')
parser.add_argument('--save_freq', '-s', default=5, type=int, metavar='N',
help='how many batches between savings of the data')
parser.add_argument('--num_workers', type=int, default=10,
help='Number of workers for data loading')
parser.add_argument('--save_prelogits', action='store_true', default=False,
help='Save all prelogits to a (big) file')
# parse args, etc.
args = parser.parse_args()
batch_size = args.batch_size
if not os.path.exists(args.model_path):
raise ValueError('Model path %s not found' % args.model_path)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(message)s",
handlers=[
logging.FileHandler(os.path.join(args.output_dir, 'prediction.log')),
logging.StreamHandler()
])
logger = logging.getLogger()
logging.info('Prediction on Tiny Images')
logging.info('Args: %s', args)
# create dataset and loader
num_images = 79302017
data_path = os.path.join(args.data_dir, 'tiny_images.bin')
data = np.memmap(data_path, mode='r', dtype='uint8', order='C'
).reshape(num_images, 3, 32, 32).transpose((0, 1, 3, 2))
def to_tensor(x):
t = torch.Tensor(x) / 255
t -= torch.Tensor([0.4914, 0.4822, 0.4465]).reshape(3, 1 ,1)
t /= torch.Tensor([0.2470, 0.2435, 0.2616]).reshape(3, 1 ,1)
return t
# load model
checkpoint = torch.load(args.model_path)
num_classes = checkpoint['config']['model_config']['n_classes']
model = get_model(args.model, num_classes=num_classes, normalize_input=False)
model = DataParallel(model).cuda()
model.load_state_dict(checkpoint['state_dict'])
model.eval()
# make data loader
class MemmapDataset(Dataset):
def __init__(self, data):
super().__init__()
self.data = data
def __getitem__(self, item):
return to_tensor(self.data[item])
# return to_tensor(self.data[cifar10_indices[item]])
def __len__(self):
return len(self.data)
# return len(cifar10_indices)
data_loader = DataLoader(MemmapDataset(data),
shuffle=False, batch_size=batch_size,
num_workers=args.num_workers, pin_memory=True)
# create output variables (mapped directly to hard-drive to save memory)
def _get_mode(path):
return 'r+' if os.path.exists(path) else 'w+'
# Saving logits to logits.bin in output_dir
logits_path = os.path.join(args.output_dir, 'logits.bin')
logits_file = np.memmap(logits_path,
dtype=np.float32, mode=_get_mode(logits_path),
shape=(num_images, num_classes))
if args.save_prelogits:
num_features = model.feature_size
prelogits_path = os.path.join(args.output_dir, 'prelogits.bin')
prelogits_file = np.memmap(prelogits_path,
dtype=np.float32, mode=_get_mode(prelogits_path),
shape=(num_images, num_features))
# run predictions
output_batches = []
num_batches = len(data_loader)
count = 0
start_time = time.time()
for i, batch in enumerate(data_loader):
batch = batch.cuda()
with torch.no_grad():
logits, prelogits = model.forward(x=batch, return_prelogit=True)
output_batches.append((logits.cpu().numpy(),
prelogits.cpu().numpy()))
# Saving data
if (i + 1) % args.save_freq == 0 or i == num_batches - 1:
logits_batch, prelogits_batch = [np.concatenate(s)
for s in zip(*output_batches)]
increment = logits_batch.shape[0]
logits_file[count:(count + increment)] = logits_batch
if args.save_prelogits:
prelogits_file[count:(count + increment)] = prelogits_batch
output_batches = []
count += increment
elapsed = time.time() - start_time
logging.info('Processed %d/%d images (%.4g%%), %.3g images/sec' %
(count, num_images, 100 * count / num_images,
increment / elapsed))
start_time = time.time()
# Processing the logits file
ti_logits = np.array(logits_file)
ti_probs = np.exp(ti_logits - ti_logits.max(axis=-1, keepdims=True))
ti_probs /= ti_probs.sum(axis=-1, keepdims=True)
ti_predicted_labels = np.argmax(ti_logits, axis=-1)
ti_prediction_probs = ti_probs[np.arange(len(ti_probs)), ti_predicted_labels]
# Creating list of valid images to be used
num_images = 79302017
is_valid = np.ones(num_images, dtype='bool')
with open(os.path.join(args.data_dir, 'distance_to_cifar10_test.pickle'), 'rb') as f:
ldd = pickle.load(f)
nn_distances, nn_indices = ldd['nn_distances'], ldd['nn_indices']
# Removing TI images close to CIFAR-10 test set
is_valid &= (nn_distances > args.l2_cutoff)
# Creating label balanced set by choosing top predictions of each label
inds = np.zeros(0, dtype='int')
labels = list(range(10))
for label in labels:
mask = is_valid & (ti_predicted_labels == label)
inds = np.concatenate((inds,
np.where(mask)[0][np.argsort(ti_prediction_probs[mask])[-args.num_unlabeled:]]))
data = np.array(data[inds])
targets = np.concatenate([args.num_unlabeled * [label] for label in labels]).astype('int')
out = dict(data=data, extrapolated_targets=targets, ti_index=inds)
print('Created %s (%d images from %d candidates)' % (args.output_filename, len(data), is_valid.sum()))
with open(os.path.join(args.output_dir, args.output_filename ), 'wb') as f:
pickle.dump(out, f)