-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
407 lines (322 loc) · 12.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os
import time
import shutil
import torch
import numpy as np
from torch.optim import SGD, Adam, AdamW
from tensorboardX import SummaryWriter
import sod_metric
from eval_iou import SegmentationMetric
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
class Averager():
def __init__(self):
self.n = 0.0
self.v = 0.0
def add(self, v, n=1.0):
self.v = (self.v * self.n + v * n) / (self.n + n)
self.n += n
def item(self):
return self.v
class Timer():
def __init__(self):
self.v = time.time()
def s(self):
self.v = time.time()
def t(self):
return time.time() - self.v
def time_text(t):
if t >= 3600:
return '{:.1f}h'.format(t / 3600)
elif t >= 60:
return '{:.1f}m'.format(t / 60)
else:
return '{:.1f}s'.format(t)
_log_path = None
def set_log_path(path):
global _log_path
_log_path = path
def log(obj, filename='log.txt'):
print(obj)
if _log_path is not None:
with open(os.path.join(_log_path, filename), 'a') as f:
print(obj, file=f)
def ensure_path(path, remove=True):
basename = os.path.basename(path.rstrip('/'))
if os.path.exists(path):
if remove and (basename.startswith('_')
or input('{} exists, remove? (y/[n]): '.format(path)) == 'y'):
shutil.rmtree(path)
os.makedirs(path, exist_ok=True)
else:
os.makedirs(path, exist_ok=True)
def set_save_path(save_path, remove=True):
ensure_path(save_path, remove=remove)
set_log_path(save_path)
writer = SummaryWriter(os.path.join(save_path, 'tensorboard'))
return log, writer
def compute_num_params(model, text=False):
tot = int(sum([np.prod(p.shape) for p in model.parameters()]))
if text:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def make_optimizer(param_list, optimizer_spec, load_sd=False):
Optimizer = {
'sgd': SGD,
'adam': Adam,
'adamw': AdamW
}[optimizer_spec['name']]
optimizer = Optimizer(param_list, **optimizer_spec['args'])
if load_sd:
optimizer.load_state_dict(optimizer_spec['sd'])
return optimizer
def make_coord(shape, ranges=None, flatten=True):
""" Make coordinates at grid centers.
"""
coord_seqs = []
for i, n in enumerate(shape):
if ranges is None:
v0, v1 = -1, 1
else:
v0, v1 = ranges[i]
r = (v1 - v0) / (2 * n)
seq = v0 + r + (2 * r) * torch.arange(n).float()
coord_seqs.append(seq)
ret = torch.stack(torch.meshgrid(*coord_seqs), dim=-1)
# if flatten:
# ret = ret.view(-1, ret.shape[-1])
return ret
def seg_eval(y_pred, y_true):
batchsize = y_true.shape[0]
class_num = 5
metric = SegmentationMetric(class_num)
oa = metric.overallAccuracy()
mIoU = metric.meanIntersectionOverUnion()
p = metric.precision()
mp = np.nanmean(p)
r = metric.recall()
mr = np.nanmean(r)
f1 = (2*p*r) / (p + r)
mf1 = np.nanmean(f1)
normed_confusionMatrix = metric.confusionMatrix / metric.confusionMatrix.sum(axis=0)
normed_confusionMatrix = np.around(normed_confusionMatrix, decimals=3)
#print('total pixels:', metric.confusionMatrix.sum())
#print('1024*1024*80=',1024*1024*80)
axis_labels = ['building','vegetation','water','road','background']
#plt.figure()#figsize=(8, 8))
#sns.heatmap(normed_confusionMatrix, annot=True, cmap='Blues',yticklabels=axis_labels,xticklabels=axis_labels)
#plt.ylim(0, 4)
#plt.ylabel('Predicted labels')
#plt.xlabel('True labels')
#plt.yticks(np.array(range(0,5)), axis_labels)
#plt.savefig(true_path.split('/gt')[0]+'/confusionmatrix.jpg')
#print('self.confusionMatrix:',metric.confusionMatrix / metric.confusionMatrix.sum(axis=0))
# print(f' 类别0,类别1,...\n oa:{oa}, \n mIou:{mIoU}, \n p:{p}, \n mp:{mp}, \n r:{r}, \n mr:{mr}, \n f1:{f1}, \n mf1:{mf1}')
# print('self.confusionMatrix:',normed_confusionMatrix)
# with torch.no_grad():
# assert y_pred.shape == y_true.shape
def calc_cod(y_pred, y_true):
batchsize = y_true.shape[0]
metric_FM = sod_metric.Fmeasure()
metric_WFM = sod_metric.WeightedFmeasure()
metric_SM = sod_metric.Smeasure()
metric_EM = sod_metric.Emeasure()
metric_MAE = sod_metric.MAE()
with torch.no_grad():
assert y_pred.shape == y_true.shape
for i in range(batchsize):
true, pred = \
y_true[i, 0].cpu().data.numpy() * 255, y_pred[i, 0].cpu().data.numpy() * 255
metric_FM.step(pred=pred, gt=true)
metric_WFM.step(pred=pred, gt=true)
metric_SM.step(pred=pred, gt=true)
metric_EM.step(pred=pred, gt=true)
metric_MAE.step(pred=pred, gt=true)
fm = metric_FM.get_results()["fm"]
wfm = metric_WFM.get_results()["wfm"]
sm = metric_SM.get_results()["sm"]
em = metric_EM.get_results()["em"]["curve"].mean()
mae = metric_MAE.get_results()["mae"]
return sm, em, wfm, mae
from sklearn.metrics import precision_recall_curve
def calc_f1(y_pred,y_true):
batchsize = y_true.shape[0]
with torch.no_grad():
assert y_pred.shape == y_true.shape
f1, auc = 0, 0
y_true = y_true.cpu().numpy()
y_pred = y_pred.cpu().numpy()
for i in range(batchsize):
true = y_true[i].flatten()
true = true.astype(np.int)
pred = y_pred[i].flatten()
precision, recall, thresholds = precision_recall_curve(true, pred)
# auc
auc += roc_auc_score(true, pred)
# auc += roc_auc_score(np.array(true>0).astype(np.int), pred)
f1 += max([(2 * p * r) / (p + r+1e-10) for p, r in zip(precision, recall)])
return f1/batchsize, auc/batchsize, np.array(0), np.array(0)
def calc_fmeasure(y_pred,y_true):
batchsize = y_true.shape[0]
mae, preds, gts = [], [], []
with torch.no_grad():
for i in range(batchsize):
gt_float, pred_float = \
y_true[i, 0].cpu().data.numpy(), y_pred[i, 0].cpu().data.numpy()
# # MAE
mae.append(np.sum(cv2.absdiff(gt_float.astype(float), pred_float.astype(float))) / (
pred_float.shape[1] * pred_float.shape[0]))
# mae.append(np.mean(np.abs(pred_float - gt_float)))
#
pred = np.uint8(pred_float * 255)
gt = np.uint8(gt_float * 255)
pred_float_ = np.where(pred > min(1.5 * np.mean(pred), 255), np.ones_like(pred_float),
np.zeros_like(pred_float))
gt_float_ = np.where(gt > min(1.5 * np.mean(gt), 255), np.ones_like(pred_float),
np.zeros_like(pred_float))
preds.extend(pred_float_.ravel())
gts.extend(gt_float_.ravel())
RECALL = recall_score(gts, preds)
PERC = precision_score(gts, preds)
fmeasure = (1 + 0.3) * PERC * RECALL / (0.3 * PERC + RECALL)
MAE = np.mean(mae)
return fmeasure, MAE, np.array(0), np.array(0)
from sklearn.metrics import roc_auc_score,recall_score,precision_score
import cv2
def calc_ber(y_pred, y_true):
batchsize = y_true.shape[0]
y_pred, y_true = y_pred.permute(0, 2, 3, 1).squeeze(-1), y_true.permute(0, 2, 3, 1).squeeze(-1)
with torch.no_grad():
assert y_pred.shape == y_true.shape
pos_err, neg_err, ber = 0, 0, 0
y_true = y_true.cpu().numpy()
y_pred = y_pred.cpu().numpy()
for i in range(batchsize):
true = y_true[i].flatten()
pred = y_pred[i].flatten()
TP, TN, FP, FN, BER, ACC = get_binary_classification_metrics(pred * 255,
true * 255, 125)
pos_err += (1 - TP / (TP + FN)) * 100
neg_err += (1 - TN / (TN + FP)) * 100
return pos_err / batchsize, neg_err / batchsize, (pos_err + neg_err) / 2 / batchsize, np.array(0)
def get_binary_classification_metrics(pred, gt, threshold=None):
if threshold is not None:
gt = (gt > threshold)
pred = (pred > threshold)
TP = np.logical_and(gt, pred).sum()
TN = np.logical_and(np.logical_not(gt), np.logical_not(pred)).sum()
FN = np.logical_and(gt, np.logical_not(pred)).sum()
FP = np.logical_and(np.logical_not(gt), pred).sum()
BER = cal_ber(TN, TP, FN, FP)
ACC = cal_acc(TN, TP, FN, FP)
return TP, TN, FP, FN, BER, ACC
def cal_ber(tn, tp, fn, fp):
return 0.5*(fp/(tn+fp) + fn/(fn+tp))
def cal_acc(tn, tp, fn, fp):
return (tp + tn) / (tp + tn + fp + fn)
def _sigmoid(x):
return 1 / (1 + np.exp(-x))
def _eval_pr(y_pred, y, num):
prec, recall = torch.zeros(num), torch.zeros(num)
thlist = torch.linspace(0, 1 - 1e-10, num)
for i in range(num):
y_temp = (y_pred >= thlist[i]).float()
tp = (y_temp * y).sum()
prec[i], recall[i] = tp / (y_temp.sum() + 1e-20), tp / (y.sum() +
1e-20)
return prec, recall
def _S_object(pred, gt):
fg = torch.where(gt == 0, torch.zeros_like(pred), pred)
bg = torch.where(gt == 1, torch.zeros_like(pred), 1 - pred)
o_fg = _object(fg, gt)
o_bg = _object(bg, 1 - gt)
u = gt.mean()
Q = u * o_fg + (1 - u) * o_bg
return Q
def _object(pred, gt):
temp = pred[gt == 1]
x = temp.mean()
sigma_x = temp.std()
score = 2.0 * x / (x * x + 1.0 + sigma_x + 1e-20)
return score
def _S_region(pred, gt):
X, Y = _centroid(gt)
gt1, gt2, gt3, gt4, w1, w2, w3, w4 = _divideGT(gt, X, Y)
p1, p2, p3, p4 = _dividePrediction(pred, X, Y)
Q1 = _ssim(p1, gt1)
Q2 = _ssim(p2, gt2)
Q3 = _ssim(p3, gt3)
Q4 = _ssim(p4, gt4)
Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4
return Q
def _centroid(gt):
rows, cols = gt.size()[-2:]
gt = gt.view(rows, cols)
if gt.sum() == 0:
X = torch.eye(1) * round(cols / 2)
Y = torch.eye(1) * round(rows / 2)
else:
total = gt.sum()
i = torch.from_numpy(np.arange(0, cols)).float().cuda()
j = torch.from_numpy(np.arange(0, rows)).float().cuda()
X = torch.round((gt.sum(dim=0) * i).sum() / total + 1e-20)
Y = torch.round((gt.sum(dim=1) * j).sum() / total + 1e-20)
return X.long(), Y.long()
def _divideGT(gt, X, Y):
h, w = gt.size()[-2:]
area = h * w
gt = gt.view(h, w)
LT = gt[:Y, :X]
RT = gt[:Y, X:w]
LB = gt[Y:h, :X]
RB = gt[Y:h, X:w]
X = X.float()
Y = Y.float()
w1 = X * Y / area
w2 = (w - X) * Y / area
w3 = X * (h - Y) / area
w4 = 1 - w1 - w2 - w3
return LT, RT, LB, RB, w1, w2, w3, w4
def _dividePrediction(pred, X, Y):
h, w = pred.size()[-2:]
pred = pred.view(h, w)
LT = pred[:Y, :X]
RT = pred[:Y, X:w]
LB = pred[Y:h, :X]
RB = pred[Y:h, X:w]
return LT, RT, LB, RB
def _ssim(pred, gt):
gt = gt.float()
h, w = pred.size()[-2:]
N = h * w
x = pred.mean()
y = gt.mean()
sigma_x2 = ((pred - x) * (pred - x)).sum() / (N - 1 + 1e-20)
sigma_y2 = ((gt - y) * (gt - y)).sum() / (N - 1 + 1e-20)
sigma_xy = ((pred - x) * (gt - y)).sum() / (N - 1 + 1e-20)
aplha = 4 * x * y * sigma_xy
beta = (x * x + y * y) * (sigma_x2 + sigma_y2)
if aplha != 0:
Q = aplha / (beta + 1e-20)
elif aplha == 0 and beta == 0:
Q = 1.0
else:
Q = 0
return Q
def _eval_e(y_pred, y, num):
score = torch.zeros(num)
thlist = torch.linspace(0, 1 - 1e-10, num)
for i in range(num):
y_pred_th = (y_pred >= thlist[i]).float()
fm = y_pred_th - y_pred_th.mean()
gt = y - y.mean()
align_matrix = 2 * gt * fm / (gt * gt + fm * fm + 1e-20)
enhanced = ((align_matrix + 1) * (align_matrix + 1)) / 4
score[i] = torch.sum(enhanced) / (y.numel() - 1 + 1e-20)
return score