-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_train_cl.sh
35 lines (35 loc) · 1.05 KB
/
run_train_cl.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
CUDA_VISIBLE_DEVICES=0,1,2,3
NUM_GPU=4
PORT_ID=$(expr $RANDOM + 1000)
export OMP_NUM_THREADS=2
python -m torch.distributed.launch --nproc_per_node $NUM_GPU --master_port $PORT_ID train_joint_cl.py \
--model_name_or_path ./ckpt/mlm_backbone/ \
--train_file ./data/raw/all_train.csv \
--eval_file ./data/raw/all_dev.csv \
--train_disk ./data/disk/cl_train \
--eval_disk ./data/disk/cl_dev \
--output_dir ./result/uppam \
--eval_tokenizer ./result/uppam \
--num_train_epochs 10 \
--pad_to_max_length \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 128 \
--learning_rate 2e-5 \
--max_seq_length 256 \
--warmup_steps 270 \
--cl_loss triplet \
--act both \
--leg_act general \
--evaluation_strategy steps \
--metric_for_best_model eval_loss \
--load_best_model_at_end \
--eval_steps 50 \
--pooler_type cls \
--mlp_only_train \
--overwrite_output_dir \
--logging_dir ./logs/train_cl \
--logging_steps 10 \
--do_train \
--do_eval \
--fp16 \
"$@"