-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscript.py
462 lines (380 loc) · 17.7 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# collect the common function
import os
import numpy as np
import pandas as pd
from math import isnan
import config
from traffic import *
import copy
import json
import xml.etree.ElementTree as ET
# get traffic in one lane
def get_traffic_volume(traffic_file):
# only support "cross" and "synthetic"
if "cross" in traffic_file:
sta = traffic_file.find("equal_") + len("equal_")
end = traffic_file.find(".xml")
return int(traffic_file[sta:end])
elif "synthetic" in traffic_file:
traffic_file_list = traffic_file.split("-")
volume_list = []
for i in range(2, 6):
volume_list.append(int(traffic_file_list[i][2:]))
vol = min(max(volume_list[0:2]), max(volume_list[2:]))
return int(vol/100)*100
elif "flow" in traffic_file:
sta = traffic_file.find("flow_1_1_") + len("flow_1_1_")
end = traffic_file.find(".json")
return int(traffic_file[sta:end])
elif "real" in traffic_file:
sta = traffic_file.rfind("-") + 1
end = traffic_file.rfind(".json")
return int(traffic_file[sta:end])
elif "hangzhou" in traffic_file:
traffic = traffic_file.split(".json")[0]
vol = int(traffic.split("_")[-1])
return vol
elif "ngsim" in traffic_file:
traffic = traffic_file.split(".json")[0]
vol = int(traffic.split("_")[-1])
return vol
## get total number of vehicles
## not very comprehensive
def get_total_traffic_volume(traffic_file):
# only support "cross" and "synthetic"
if "cross" in traffic_file:
sta = traffic_file.find("equal_") + len("equal_")
end = traffic_file.find(".xml")
return int(traffic_file[sta:end]) * 4
elif "synthetic" in traffic_file:
sta = traffic_file.rfind("-") + 1
end = traffic_file.rfind(".json")
return int(traffic_file[sta:end])
elif "flow" in traffic_file:
sta = traffic_file.find("flow_1_1_") + len("flow_1_1_")
end = traffic_file.find(".json")
return int(traffic_file[sta:end]) * 4
elif "real" in traffic_file:
sta = traffic_file.rfind("-") + 1
end = traffic_file.rfind(".json")
return int(traffic_file[sta:end])
elif "hangzhou" in traffic_file:
traffic = traffic_file.split(".json")[0]
vol = int(traffic.split("_")[-1])
return vol
elif "ngsim" in traffic_file:
traffic = traffic_file.split(".json")[0]
vol = int(traffic.split("_")[-1])
return vol
def write_summary(dic_path, dic_exp_conf, cnt_round):
episode_len = dic_exp_conf["EPISODE_LEN"]
traffic_file = dic_exp_conf["TRAFFIC_FILE"]
record_dir = os.path.join(dic_path["PATH_TO_WORK_DIRECTORY"], "train_round")
path_to_log = os.path.join(dic_path["PATH_TO_WORK_DIRECTORY"], "test_results.csv")
path_to_seg_log = os.path.join(dic_path["PATH_TO_WORK_DIRECTORY"], "test_seg_results.csv")
num_seg = episode_len // 3600
if not os.path.exists(path_to_log):
df_col = pd.DataFrame(columns=("round", "duration", "vec_in", "vec_out"))
if num_seg > 1:
list_seg_col = ["round"]
for i in range(num_seg):
list_seg_col.append("duration-" + str(i))
df_seg_col = pd.DataFrame(columns=list_seg_col)
df_seg_col.to_csv(path_to_seg_log, mode="a", index=False)
df_col.to_csv(path_to_log, mode="a", index=False)
# summary items (duration) from csv
df_vehicle_inter_0 = pd.read_csv(os.path.join(record_dir, "vehicle_inter_0_round_{}.csv".format(cnt_round)),
sep=',', header=0, dtype={0: str, 1: float, 2: float},
names=["vehicle_id", "enter_time", "leave_time"])
vehicle_in = sum([int(x) for x in (df_vehicle_inter_0["enter_time"].values > 0)])
vehicle_out = sum([int(x) for x in (df_vehicle_inter_0["leave_time"].values > 0)])
# duration = df_vehicle_inter_0["leave_time"].values - df_vehicle_inter_0["enter_time"].values
# ave_duration = np.mean([time for time in duration if not isnan(time)])
# ********* new calculation of duration **********
df_vehicle_planed_enter = get_planed_entering(os.path.join(dic_path["PATH_TO_DATA"], traffic_file), episode_len)
ave_duration = cal_travel_time(df_vehicle_inter_0, df_vehicle_planed_enter, episode_len)
summary = {"round": [cnt_round], "duration": [ave_duration], "vec_in": [vehicle_in], "vec_out": [vehicle_out]}
df_summary = pd.DataFrame(summary)
df_summary.to_csv(path_to_log, mode="a", header=False, index=False)
if num_seg > 1:
list_duration_seg = [float('inf')] * num_seg
nan_thres = 120
for i, interval in enumerate(range(0, episode_len, 3600)):
did = np.bitwise_and(df_vehicle_inter_0["enter_time"].values < interval + 3600,
df_vehicle_inter_0["enter_time"].values > interval)
duration_seg = df_vehicle_inter_0["leave_time"][did].values - df_vehicle_inter_0["enter_time"][
did].values
ave_duration_seg = np.mean([time for time in duration_seg if not isnan(time)])
# print(traffic_file, round, i, ave_duration)
real_traffic_vol_seg = 0
nan_num_seg = 0
for time in duration_seg:
if not isnan(time):
real_traffic_vol_seg += 1
else:
nan_num_seg += 1
if nan_num_seg < nan_thres:
list_duration_seg[i] = ave_duration_seg
round_summary = {"round": [cnt_round]}
for j in range(num_seg):
key = "duration-" + str(j)
if key not in round_summary.keys():
round_summary[key] = [list_duration_seg[j]]
round_summary = pd.DataFrame(round_summary)
round_summary.to_csv(path_to_seg_log, mode="a", index=False, header=False)
def get_planed_entering(flowFile, episode_len):
# todo--check with huichu about how each vehicle is inserted, according to the interval. 1s error may occur.
if 'json' in flowFile:
list_flow = json.load(open(flowFile, "r"))
dic_traj = {'vehicle_id':[], 'planed_enter_time':[]}
for flow_id, flow in enumerate(list_flow):
list_ts_this_flow = []
for step in range(flow["startTime"], min(flow["endTime"] + 1, episode_len)):
if step == flow["startTime"]:
list_ts_this_flow.append(step)
elif step - list_ts_this_flow[-1] >= flow["interval"]:
list_ts_this_flow.append(step)
for vec_id, ts in enumerate(list_ts_this_flow):
dic_traj['vehicle_id'].append("flow_{0}_{1}".format(flow_id, vec_id))
dic_traj['planed_enter_time'].append(ts)
df = pd.DataFrame(dic_traj)
else:
tree = ET.parse(flowFile)
root = tree.getroot()
vehicle = root.findall('vehicle')
dic_traj = {'vehicle_id': [], 'planed_enter_time': []}
for id, v in enumerate(vehicle):
dic_traj['vehicle_id'].append("{}".format(id))
dic_traj['planed_enter_time'].append(int(v.attrib['depart']))
df = pd.DataFrame(dic_traj)
return df
def cal_travel_time(df_vehicle_actual_enter_leave, df_vehicle_planed_enter, episode_len):
df_vehicle_planed_enter.set_index('vehicle_id', inplace=True)
df_vehicle_actual_enter_leave.set_index('vehicle_id', inplace=True)
df_res = pd.concat([df_vehicle_planed_enter, df_vehicle_actual_enter_leave], axis=1, sort=False)
assert len(df_res) == len(df_vehicle_planed_enter)
df_res["leave_time"].fillna(episode_len, inplace=True)
df_res["travel_time"] = df_res["leave_time"] - df_res["planed_enter_time"]
travel_time = df_res["travel_time"].mean()
return travel_time
def parse():
import argparse
parser = argparse.ArgumentParser(description='Meta RLSignal')
parser.add_argument("--memo", type=str, default="default")
parser.add_argument("--algorithm", type=str, default="TransferDQN")
parser.add_argument("--traffic", type=str, default='debug')
parser.add_argument("--pre_train_model_name", type=str, default='random')
parser.add_argument("--roadnet", type=str, default="roadnet_1_1.json")
parser.add_argument("--flow_file", type=str, default="flow.json")
# running time
parser.add_argument("--episode_len", type=int, default=3600)
parser.add_argument("--test_episode_len", type=int, default=3600)
parser.add_argument("--run_round", type=int, default=40)
parser.add_argument("--sample_size", type=int, default=30)
parser.add_argument("--update_start", type=int, default=100)
parser.add_argument("--update_period", type=int, default=1)
parser.add_argument("--test_period", type=int, default=50)
# process relevant
parser.add_argument("--num_process", type=int, default=10, help="number of traffic")
parser.add_argument('--num_generator', type=int, default=1,
help='total number of generator')
parser.add_argument('--num_workers', type=int, default=1,
help='maximum number of generator at the same time; <= num_generator')
# learning rate
parser.add_argument("--alpha", type=float, default=0.001, help='learning_rate')
parser.add_argument("--learning_rate_decay_step", type=int, default=100)
parser.add_argument("--min_alpha", type=float, default=0.001)
# epsilon
parser.add_argument("--epsilon", type=float, default=0.8)
parser.add_argument("--min_epsilon", type=float, default=0.2)
parser.add_argument('--epoch', type=int, default=1,
help='number of gradient step when updating para')
parser.add_argument("--clip_size", type=float, default=1)
parser.add_argument("--seed", type=int, default=11)
# rarely change
parser.add_argument("--replay", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--sumo_gui", action="store_true")
parser.add_argument("--done", action="store_true")
parser.add_argument("--visible_gpu", type=str, default="")
args = parser.parse_args()
return args
def choose_traffic_file(args):
if args.traffic == 'uniform':
traffic_file_list = uniform_traffic_list
elif args.traffic == 'large':
traffic_file_list = large_traffic_list
elif args.traffic == 'new':
traffic_file_list = new_traffic_list
elif args.traffic == 'small':
traffic_file_list = small_traffic_list
elif args.traffic == 'debug':
traffic_file_list = debug_traffic_list
elif args.traffic == 'hangzhou':
traffic_file_list = hangzhou_traffic_list
elif args.traffic == 'jinan':
traffic_file_list = jinan_traffic_list
elif args.traffic == 'atlanta':
traffic_file_list = atlanta_traffic_list
elif args.traffic == 'three':
traffic_file_list = three_traffic_list
elif args.traffic == 'five':
traffic_file_list = five_traffic_list
else:
raise(ValueError)
return traffic_file_list
def merge(dic_tmp, dic_to_change):
dic_result = copy.deepcopy(dic_tmp)
dic_result.update(dic_to_change)
return dic_result
def config_all(args):
dic_traffic_env_conf_extra = {
# file
"ROADNET_FILE": args.roadnet,
"FLOW_FILE": args.flow_file,
# gui
"IF_GUI": args.sumo_gui,
"SAVEREPLAY": args.replay,
"EPISODE_LEN": args.episode_len,
"DONE_ENABLE": args.done,
# different env (traffic or point)
# normalization
"REWARD_NORM": False,
"INPUT_NORM": False,
"NUM_ROW": 1,
"NUM_COL": 1,
# state & reward
# "LIST_STATE_FEATURE": [ "cur_phase", "lane_num_vehicle"],
"DIC_REWARD_INFO": {"sum_num_vehicle_been_stopped_thres1": -0.25},
"LANE_NUM": {
"LEFT": 1,
"RIGHT": 0,
"STRAIGHT": 1
},
"PHASE": [
'WT_ET',
'NT_ST',
'WL_EL',
'NL_SL',
# 'WT_WL',
# 'ET_EL',
# 'NT_NL',
# 'ST_SL',
],
"LOG_DEBUG": args.debug,
"NUM_GENERATOR": args.num_generator,
'MODEL_NAME': args.algorithm,
}
# policy & agent config
dic_agent_conf_extra = {
"UPDATE_Q_BAR_FREQ": 5,
# network
"N_LAYER": 2,
'NORM': 'None',
'EPOCH': args.epoch,
'PERIOD': 5,
'ACTIVATION_FN': 'leaky_relu',
'GRADIENT_CLIP': True,
'CLIP_SIZE': args.clip_size,
'PRE_TRAIN_MODEL_NAME': args.pre_train_model_name,
'OPTIMIZER': 'sgd',
#
"ALPHA": args.alpha,
"MIN_ALPHA": args.min_alpha,
"ALPHA_DECAY_STEP": args.learning_rate_decay_step,
'SEED': args.seed,
"EPSILON": args.epsilon,
"MIN_EPSILON": args.min_epsilon,
#
'SAMPLE_SIZE': args.sample_size,
'UPDATE_START': args.update_start, # 500,
'UPDATE_PERIOD': args.update_period, # 300,
"TEST_PERIOD": args.test_period,
}
# path config
dic_path_extra = {
"PATH_TO_MODEL": os.path.join("model", args.memo),
"PATH_TO_WORK_DIRECTORY": os.path.join("records", args.memo),
"PATH_TO_DATA": os.path.join("data", "tmp"),
"PATH_TO_ERROR": os.path.join("errors", args.memo),
"PATH_TO_GRADIENT": os.path.join("records", args.memo),
}
# experiment config
dic_exp_conf_extra = {
"EPISODE_LEN": args.episode_len,
"TEST_EPISODE_LEN": args.test_episode_len,
"MODEL_NAME": args.algorithm, # Todo
"NUM_ROUNDS": args.run_round,
"NUM_GENERATORS": 3,
"NUM_EPISODE": 1,
"MODEL_POOL": False,
"NUM_BEST_MODEL": 1,
"PRETRAIN": False,
"PRETRAIN_NUM_ROUNDS": 20,
"PRETRAIN_NUM_GENERATORS": 15,
"AGGREGATE": False,
"DEBUG": False,
"EARLY_STOP": False,
}
model_name = args.algorithm
deploy_dic_exp_conf = merge(config.DIC_EXP_CONF, dic_exp_conf_extra)
deploy_dic_agent_conf = merge(getattr(config, "DIC_{0}_AGENT_CONF".format(model_name.upper())),
dic_agent_conf_extra)
deploy_dic_traffic_env_conf = merge(config.dic_traffic_env_conf, dic_traffic_env_conf_extra)
deploy_dic_path = merge(config.DIC_PATH, dic_path_extra)
return deploy_dic_exp_conf, deploy_dic_agent_conf, deploy_dic_traffic_env_conf, deploy_dic_path
def parse_roadnet(roadnetFile):
roadnet = json.load(open(roadnetFile))
lane_phase_info_dict ={}
# many intersections exist in the roadnet and virtual intersection is controlled by signal
for intersection in roadnet["intersections"]:
if intersection['virtual']:
continue
lane_phase_info_dict[intersection['id']] = {"start_lane": [],
"same_start_lane": [],
"end_lane": [],
"phase": [],
"phase_startLane_mapping": {},
"phase_sameStartLane_mapping": {},
"phase_roadLink_mapping": {}}
road_links = intersection["roadLinks"]
start_lane = []
same_start_lane = []
end_lane = []
roadLink_lane_pair = {ri: [] for ri in
range(len(road_links))} # roadLink includes some lane_pair: (start_lane, end_lane)
roadLink_same_start_lane = {ri: [] for ri in
range(len(road_links))} # roadLink includes some lane_pair: (start_lane, end_lane)
for ri in range(len(road_links)):
road_link = road_links[ri]
tmp_same_start_lane = []
for lane_link in road_link["laneLinks"]:
sl = road_link['startRoad'] + "_" + str(lane_link["startLaneIndex"])
el = road_link['endRoad'] + "_" + str(lane_link["endLaneIndex"])
start_lane.append(sl)
tmp_same_start_lane.append(sl)
end_lane.append(el)
roadLink_lane_pair[ri].append((sl, el))
tmp_same_start_lane = tuple(set(tmp_same_start_lane))
roadLink_same_start_lane[ri].append(tmp_same_start_lane)
same_start_lane.append(tmp_same_start_lane)
lane_phase_info_dict[intersection['id']]["start_lane"] = sorted(list(set(start_lane)))
lane_phase_info_dict[intersection['id']]["end_lane"] = sorted(list(set(end_lane)))
lane_phase_info_dict[intersection['id']]["same_start_lane"] = sorted(list(set(same_start_lane)))
for phase_i in range(1, len(intersection["trafficLight"]["lightphases"])):
p = intersection["trafficLight"]["lightphases"][phase_i]
lane_pair = []
start_lane = []
same_start_lane = []
for ri in p["availableRoadLinks"]:
lane_pair.extend(roadLink_lane_pair[ri])
for i in range(len(roadLink_lane_pair[ri])):
if roadLink_lane_pair[ri][i][0] not in start_lane:
start_lane.append(roadLink_lane_pair[ri][i][0])
if roadLink_same_start_lane[ri][0] not in same_start_lane:
same_start_lane.append(roadLink_same_start_lane[ri][0])
lane_phase_info_dict[intersection['id']]["phase"].append(phase_i)
lane_phase_info_dict[intersection['id']]["phase_startLane_mapping"][phase_i] = start_lane
lane_phase_info_dict[intersection['id']]["phase_sameStartLane_mapping"][phase_i] = same_start_lane
lane_phase_info_dict[intersection['id']]["phase_roadLink_mapping"][phase_i] = lane_pair
return lane_phase_info_dict