-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
346 lines (279 loc) · 14.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import argparse
import datetime
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from timm.models import create_model
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler
from datasets import build_dataset
from engine import train_one_epoch, evaluate, generate_attention_maps_ms
import models
import utils
import os
import numpy as np
import random
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=32, type=int)
parser.add_argument('--epochs', default=45, type=int)
# Model parameters
parser.add_argument('--model', default='deit_small_MCTformerPlus', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=448, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
# Dataset parameters
parser.add_argument('--data-path', default='VOCdevkit/VOC2012', type=str, help='dataset path')
parser.add_argument('--img-list', default='voc12', type=str, help='image list path')
parser.add_argument('--data-set', default='VOC12', type=str, help='dataset')
parser.add_argument('--output_dir', default='saved_model',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# generating attention maps
parser.add_argument('--gen_attention_maps', default=False, action='store_true')
parser.add_argument('--patch-size', type=int, default=16)
parser.add_argument('--attention-dir', type=str, default='cam-png')
parser.add_argument('--layer-index', type=int, default=12, help='extract attention maps from the last layers')
parser.add_argument('--patch-attn-refine', type=bool, default=True)
parser.add_argument('--visualize-cls-attn', type=bool, default=True)
parser.add_argument('--gt-dir', type=str, default=None)
parser.add_argument('--cam-npy-dir', type=str, default='cam-npy')
parser.add_argument("--scales", nargs='+', type=float, default=[1.0,0.75,1.25])
parser.add_argument('--label-file-path', type=str, default=None)
parser.add_argument('--attention-type', type=str, default='fused')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument("--loss-weight", default=1.0, type=float)
parser.add_argument("--num-cct", default=12, type=int)
return parser
def same_seeds(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
def main(args):
print(args)
device = torch.device(args.device)
# same_seeds(0)
seed = args.seed
# cudnn.benchmark = True
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
dataset_train_, args.nb_classes = build_dataset(is_train=False, gen_attn=True, args=args)
dataset_val, _ = build_dataset(is_train=False, args=args)
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_train_ = torch.utils.data.DataLoader(
dataset_train_,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
input_size=args.input_size
)
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
try:
checkpoint_model = checkpoint['model']
except:
checkpoint_model = checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
if args.finetune.startswith('https'):
num_extra_tokens = 1
else:
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
if args.finetune.startswith('https') and 'MCTformer' in args.model:
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens].repeat(1,args.nb_classes,1)
else:
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = pos_tokens[:, :, :, None, :, None].expand(-1, -1, -1, 2, -1, 2).reshape(pos_tokens.size(0), pos_tokens.size(1), pos_tokens.size(2)*2, pos_tokens.size(3) *2)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
checkpoint_model['pos_embed_cls'] = extra_tokens
checkpoint_model['pos_embed_pat'] = pos_tokens
if args.finetune.startswith('https') and 'MCTformer' in args.model:
cls_token_checkpoint = checkpoint_model['cls_token']
new_cls_token = cls_token_checkpoint.repeat(1,args.nb_classes,1)
checkpoint_model['cls_token'] = new_cls_token
model.load_state_dict(checkpoint_model, strict=False)
model.to(device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
output_dir = Path(args.output_dir)
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
print(f"mAP of the network on the {len(dataset_val)} test images: {test_stats['mAP']*100:.1f}%")
return
if args.gen_attention_maps:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
generate_attention_maps_ms(data_loader_train_, model, device, args)
return
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad,
args=args
)
lr_scheduler.step(epoch)
test_stats = evaluate(data_loader_val, model, device)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model.state_dict(),
'epoch': epoch,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
torch.save({'model': model.state_dict()}, output_dir / 'checkpoint.pth')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)