-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathfinetune.py
205 lines (195 loc) · 9.26 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python
import sys
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torchvision.transforms as tfs
from torchvision.datasets import ImageFolder, CIFAR10
from torch.utils.data import DataLoader
from miscs.pgd import attack_label_Linf_PGD
cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--netD', type=str, required=True)
parser.add_argument('--netG', type=str, required=True)
parser.add_argument('--ndf', type=int, required=True)
parser.add_argument('--ngf', type=int, required=True)
parser.add_argument('--nclass', type=int, required=True)
parser.add_argument('--nz', type=int, default=128)
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--batch_size', type=int, required=True)
parser.add_argument('--root', type=str, required=True)
parser.add_argument('--start_width', type=int, default=4)
parser.add_argument('--img_width', type=int, required=True)
parser.add_argument('--steps', type=int, required=True)
parser.add_argument('--epsilon', type=float, required=True)
parser.add_argument('--lam', type=float, required=True)
parser.add_argument('--lr', type=float, required=True)
parser.add_argument('--ngpu', type=int, required=True)
parser.add_argument('--workers', type=int, default=3)
parser.add_argument('--out_f', type=str, required=True)
opt = parser.parse_args()
def load_models():
if opt.model == "resnet_32":
from gen_models.resnet_32 import ResNetGenerator
from dis_models.preact_resnet import PreActResNet18
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = PreActResNet18()
elif opt.model == "resnet_64":
from gen_models.resnet_64 import ResNetGenerator
from dis_models.resnet_64 import ResNetAC
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = ResNetAC(ch=opt.ndf, n_classes=opt.nclass)
elif opt.model == "resnet_128":
from gen_models.resnet_small import ResNetGenerator
from dis_models.resnet_small import ResNetAC
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = ResNetAC(ch=opt.ndf, n_classes=opt.nclass, bn=True) #XXX here we choose bn=True, because of improper initialization
elif opt.model == "resnet_imagenet":
from gen_models.resnet import ResNetGenerator
from dis_models.resnet import ResNetAC
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = ResNetAC(ch=opt.ndf, n_classes=opt.nclass)
else:
raise ValueError(f"Unknown model name: {opt.model}")
if opt.ngpu > 0:
gen, dis = gen.cuda(), dis.cuda()
gen, dis = torch.nn.DataParallel(gen, device_ids=range(opt.ngpu)), \
torch.nn.DataParallel(dis, device_ids=range(opt.ngpu))
else:
raise ValueError("Must run on gpus, ngpu > 0")
gen.load_state_dict(torch.load(opt.netG))
dis.load_state_dict(torch.load(opt.netD))
return gen, dis
def make_dataset():
if opt.dataset == "cifar10":
trans = tfs.Compose([
tfs.RandomCrop(opt.img_width, padding=4),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5])
])
data = CIFAR10(root=opt.root, train=True, download=False, transform=trans)
data_test = CIFAR10(root=opt.root, train=False, download=False, transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
loader_test = DataLoader(data_test, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
elif opt.dataset == "dog_and_cat_64":
trans = tfs.Compose([
tfs.RandomResizedCrop(opt.img_width, scale=(0.8, 0.9), ratio=(1.0, 1.0)),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]),
])
data = ImageFolder(opt.root, transform=trans)
data_test = ImageFolder("/data3/sngan_dog_cat_val", transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
loader_test = DataLoader(data_test, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
elif opt.dataset == "dog_and_cat_128":
trans = tfs.Compose([
tfs.RandomResizedCrop(opt.img_width, scale=(0.8, 0.9), ratio=(1.0, 1.0)),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]),
])
data = ImageFolder(opt.root, transform=trans)
data_test = ImageFolder("/nvme0/sngan_dog_cat_val", transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
loader_test = DataLoader(data_test, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
elif opt.dataset == "imagenet":
trans = tfs.Compose([
tfs.RandomResizedCrop(opt.img_width, scale=(0.8, 0.9), ratio=(1.0, 1.0)),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]),
])
data = ImageFolder(opt.root, transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
else:
raise ValueError(f"Unknown dataset: {opt.dataset}")
return loader, loader_test
def test_acc(loader_test, dis):
total = 0
correct_label = 0
for i, (x_real, y_real) in enumerate(loader_test):
if i == 100:
break
x_real, y_real = x_real.cuda(), y_real.cuda()
v_y_real, v_x_real = Variable(y_real), Variable(x_real)
adv_input = attack_label_Linf_PGD(v_x_real, v_y_real, dis, opt.steps * 4, opt.epsilon)
with torch.no_grad():
_, d_multi = dis(adv_input)
_, idx = torch.max(d_multi.data, dim=1)
label_correct = idx.eq(y_real)
correct_label += torch.sum(label_correct).item()
total += y_real.numel()
print(f'test_acc: {correct_label/total}')
def get_optimizer(parameters):
#optimizer = torch.optim.SGD(dis.parameters(), lr=opt.lr, momentum=0.9, weight_decay=5.0e-4)
return torch.optim.Adam(parameters, lr=opt.lr)
def main():
# model
gen, dis = load_models()
# data
loader, loader_test = make_dataset()
# optimizer
optimizer = get_optimizer(dis.parameters())
# loss function
loss_f = nn.CrossEntropyLoss()
# buffer
noise = torch.FloatTensor(opt.batch_size, opt.nz).zero_().cuda()
noise_v = Variable(noise)
noise_y = torch.LongTensor(opt.batch_size).zero_().cuda()
noise_y_v = Variable(noise_y)
epochs = [20, 20, 10, 10]
accumulate = 0
for stage in epochs:
for _ in range(stage):
accumulate += 1
for it, (x, y) in enumerate(loader):
# feed real images
x, y = x.cuda(), y.cuda()
vx_real, vy = Variable(x), Variable(y)
vx_real_adv = attack_label_Linf_PGD(vx_real, vy, dis,
opt.steps, opt.epsilon)
_, output_real = dis(vx_real_adv)
loss_real = loss_f(output_real, vy)
# feed fake images
if opt.lam > 0:
noise_v.normal_(0, 1)
noise_y.random_(0, to=opt.nclass)
with torch.no_grad():
vx_fake = gen(noise_v, noise_y_v)
vx_fake_adv = attack_label_Linf_PGD(vx_fake, noise_y_v,
dis, opt.steps, opt.epsilon)
_, output_fake = dis(vx_fake_adv)
loss_fake = loss_f(output_fake, noise_y_v)
# combined loss
loss_total = loss_real + opt.lam * loss_fake
else:
loss_total = loss_real
dis.zero_grad()
loss_total.backward()
optimizer.step()
# accuracy on real / fake
_, idx = torch.max(output_real, dim=1)
correct_real = torch.sum(y.eq(idx.data)).item()
accuracy_real = correct_real / y.numel()
if opt.lam > 0:
_, idx = torch.max(output_fake, dim=1)
correct_fake = torch.sum(noise_y.eq(idx.data)).item()
accuracy_fake = correct_fake / noise_y.numel()
print(f'[{accumulate}][{it}/{len(loader)}] acc_real: {accuracy_real}, acc_fake: {accuracy_fake}')
else:
print(f'[{accumulate}][{it}/{len(loader)}] acc_real: {accuracy_real}, acc_fake: NA')
sys.stdout.flush()
# test
test_acc(loader_test, dis)
# save model
torch.save(dis.state_dict(), f'./{opt.out_f}/dis_finetune_{accumulate}.pth')
opt.lr /= 10
#optimizer = torch.optim.SGD(dis.parameters(), lr=opt.lr, momentum=0.9, weight_decay=5.0e-4)
optimizer = get_optimizer(dis.parameters())
if __name__ == "__main__":
main()