-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
36 lines (29 loc) · 1.06 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#!/usr/bin/env python3
from keras.layers.convolutional import Conv2DTranspose
from keras.initializers import Constant
import numpy as np
def upsample_filt(size):
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
return (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
def bilinear_upsample_weights(factor, number_of_classes):
filter_size = factor*2 - factor%2
weights = np.zeros((filter_size, filter_size, number_of_classes, number_of_classes),
dtype=np.float32)
upsample_kernel = upsample_filt(filter_size)
for i in range(number_of_classes):
weights[:, :, i, i] = upsample_kernel
return weights
def bilinear2x(x, nfilters):
'''
Ugh, I don't like making layers.
My credit goes to: https://kivantium.net/keras-bilinear
'''
return Conv2DTranspose(nfilters, (4, 4),
strides=(2, 2),
padding='same',
kernel_initializer=Constant(bilinear_upsample_weights(2, nfilters)))(x)