-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
89 lines (65 loc) · 2.06 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python3
class Args :
# dataset size... Use positive number to sample subset of the full dataset.
dataset_sz = -1
# Archive outputs of training here for animating later.
anim_dir = "anim"
data_dir = "j:/hep/sk/done_front/"
"""
Supported aspect ratios:
1:4 - 64x256
1:2 - 64x128, 128x256
9:16 - 144x256
3:4 - 192x256, 96x128
2:3 - 128x192, 64x96
1:1 - 64x64, 128x128, 256x256
3:2 - 192x128, 96x64
4:3 - 256x192, 128x96
16:9 - 256x144
2:1 - 128x64, 256x128
4:1 - 256x64
Make sure w and h below reflect one of the supported aspect ratios above!
Aspect ratios are in the form w x h
"""
w = 256
h = 192
# alpha, used by leaky relu of D and G networks.
#alpha_D = 0.2
#alpha_G = 0.2
alpha_D = 0.2
alpha_G = 0.2
d_lr = 0.0002
g_lr = d_lr/2
# batch size, during training.
#batch_sz = 16
batch_sz = 16
batch_len = 100
# Length of the noise vector to generate the faces from.
# Latent space z
noise_shape = (1, 1, 8)
#noise_shape = (1, 1, 8)
# GAN training can be ruined any moment if not careful.
# Archive some snapshots in this directory.
snapshot_dir = "./snapshots"
# dropout probability
dropout = 0.0
# noisy label magnitude
#label_noise = 0.1
label_noise = 0.1
# history to keep. Slower training but higher quality.
#history_sz = 8
history_sz = 8
genw = "gen.hdf5"
discw = "disc.hdf5"
# Weight initialization function.
#kernel_initializer = 'Orthogonal'
#kernel_initializer = 'RandomNormal'
# Same as default in Keras, but good for GAN, says
# https://github.com/gheinrich/DIGITS-GAN/blob/master/examples/weight-init/README.md#experiments-with-lenet-on-mnist
kernel_initializer = 'glorot_uniform'
# Since DCGAN paper, everybody uses 0.5 and for me, it works the best too.
# I tried 0.9, 0.1.
#adam_beta = 0.5
adam_beta = 0.5
# BatchNormalization matters too.
bn_momentum = 0.3