generated from xinntao/ProjectTemplate-Python
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathexample_option.yml
102 lines (86 loc) · 1.64 KB
/
example_option.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# general settings
name: BasicSR_example
model_type: ExampleModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
# dataset and data loader settings
datasets:
train:
name: ExampleBSDS100
type: ExampleDataset
dataroot_gt: datasets/example/BSDS100
io_backend:
type: disk
gt_size: 128
use_flip: true
use_rot: true
# data loader
use_shuffle: true
num_worker_per_gpu: 3
batch_size_per_gpu: 16
dataset_enlarge_ratio: 10
prefetch_mode: ~
val:
name: ExampleSet5
type: ExampleDataset
dataroot_gt: datasets/example/Set5
io_backend:
type: disk
# network structures
network_g:
type: ExampleArch
num_in_ch: 3
num_out_ch: 3
num_feat: 64
upscale: 4
# path
path:
pretrain_network_g: ~
strict_load_g: true
resume_state: ~
# training settings
train:
optim_g:
type: Adam
lr: !!float 2e-4
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: MultiStepLR
milestones: [50000]
gamma: 0.5
total_iter: 100000
warmup_iter: -1 # no warm up
# losses
l1_opt:
type: ExampleLoss
loss_weight: 1.0
l2_opt:
type: MSELoss
loss_weight: 1.0
reduction: mean
# validation settings
val:
val_freq: !!float 5e3
save_img: false
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
niqe:
type: calculate_niqe
crop_border: 4
# logging settings
logger:
print_freq: 100
save_checkpoint_freq: !!float 5e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500