-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcut_abd_job.sh
30 lines (26 loc) · 982 Bytes
/
cut_abd_job.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#!/bin/bash
dataset=abd
fold=0
train_sample=1
num_classes=5
batch_size=4
netG=smallstylegan2
model=cut_atten_coseg_sum
exp=${model}_${dataset}
l_pcl=1
l_gcl=1
l_gan=1
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/software/anaconda3/lib/
echo "start running job"
python CUTExperiment.py --model ${model} --batch_size ${batch_size} --n_epochs 200 --seg_start_point 0 \
--n_epochs_decay 0 \
--fold ${fold} \
--num_classes ${num_classes} \
--pcl_idt False \
--lambda_PCL ${l_pcl} \
--src_dir ${where_you_store_the_source_data} --src_data_dir ${the_direct_you_store_the_processed_source_data} \
--target_dir ${where_you_store_the_target_data} --target_data_dir ${where_you_store_the_processed_target_data} \
--name ${exp}_f${fold}_b${batch_size}
# > output_log/${exp}_f${fold}_b${batch_size}
# eval.sh give examples of src_dir and src_data_dir, we set the two parameters because there might be different
# preprocessing settings, and we store them in different folders under src_dir