-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathuno_pytorch.py
737 lines (636 loc) · 32 KB
/
uno_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
"""
File Name: UnoPytorch/uno_pytorch.py
Author: Xiaotian Duan (xduan7)
Email: [email protected]
Date: 8/13/18
Python Version: 3.6.6
File Description:
"""
import errno
import os
import argparse
import json
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import LambdaLR
from networks.functions.cl_clf_func import train_cl_clf, valid_cl_clf
from networks.functions.drug_qed_func import train_drug_qed, valid_drug_qed
from networks.functions.drug_target_func import train_drug_target, \
valid_drug_target
from networks.functions.resp_func import train_resp, valid_resp
from networks.structures.classification_net import ClfNet
from networks.structures.regression_net import RgsNet
from networks.structures.response_net import RespNet
from utils.data_processing.label_encoding import get_label_dict
from utils.datasets.drug_qed_dataset import DrugQEDDataset
from utils.datasets.drug_resp_dataset import DrugRespDataset
from utils.datasets.cl_class_dataset import CLClassDataset
from utils.data_processing.dataframe_scaling import SCALING_METHODS
from networks.initialization.encoder_init import get_gene_encoder, \
get_drug_encoder
from utils.datasets.drug_target_dataset import DrugTargetDataset
from utils.miscellaneous.optimizer import get_optimizer
from utils.miscellaneous.random_seeding import seed_random_state
# Number of workers for dataloader. Too many workers might lead to process
# hanging for PyTorch version 4.1. Set this number between 0 and 4.
NUM_WORKER = 4
DATA_ROOT = './data/'
def main():
# Training settings and hyper-parameters
parser = argparse.ArgumentParser(
description='Multitasking Neural Network for Genes and Drugs')
# Dataset parameters ######################################################
# Training and validation data sources
parser.add_argument('--trn_src', type=str, required=True,
help='training source for drug response')
parser.add_argument('--val_srcs', type=str, required=True, nargs='+',
help='validation list of sources for drug response')
# Pre-processing for dataframes
parser.add_argument('--lat_scaling', type=str, default='std',
help='scaling method for latent drug features',
choices=SCALING_METHODS)
parser.add_argument('--grth_scaling', type=str, default='std',
help='scaling method for drug response (growth)',
choices=SCALING_METHODS)
parser.add_argument('--dscptr_scaling', type=str, default='std',
help='scaling method for drug feature (descriptor)',
choices=SCALING_METHODS)
parser.add_argument('--rnaseq_scaling', type=str, default='std',
help='scaling method for RNA sequence',
choices=SCALING_METHODS)
parser.add_argument('--dscptr_nan_threshold', type=float, default=0.0,
help='ratio of NaN values allowed for drug descriptor')
parser.add_argument('--qed_scaling', type=str, default='none',
help='scaling method for drug weighted QED',
choices=SCALING_METHODS)
# Feature usage and partitioning settings
parser.add_argument('--rnaseq_feature_usage', type=str, default='combat',
help='RNA sequence data used',
choices=['source_scale', 'combat', 'livermore'])
parser.add_argument('--drug_feature_usage', type=str, default='both',
help='drug features (fp and/or desc, or lat) used',
choices=['fingerprint', 'descriptor',
'both', 'latent'])
parser.add_argument('--validation_ratio', type=float, default=0.2,
help='ratio for validation dataset')
parser.add_argument('--disjoint_drugs', action='store_true',
help='disjoint drugs between train/validation')
parser.add_argument('--disjoint_cells', action='store_true',
help='disjoint cells between train/validation')
# Network configuration ###################################################
# Encoders for drug features and RNA sequence (LINCS 1000)
parser.add_argument('--gene_layer_dim', type=int, default=1024,
help='dimension of layers for RNA sequence')
parser.add_argument('--gene_latent_dim', type=int, default=256,
help='dimension of latent variable for RNA sequence')
parser.add_argument('--gene_num_layers', type=int, default=2,
help='number of layers for RNA sequence')
parser.add_argument('--drug_layer_dim', type=int, default=4096,
help='dimension of layers for drug feature')
parser.add_argument('--drug_latent_dim', type=int, default=1024,
help='dimension of latent variable for drug feature')
parser.add_argument('--drug_num_layers', type=int, default=2,
help='number of layers for drug feature')
# Using autoencoder for drug/sequence encoder initialization
parser.add_argument('--autoencoder_init', action='store_true',
help='indicator of autoencoder initialization for '
'drug/RNA sequence feature encoder')
# Drug response regression network
parser.add_argument('--resp_layer_dim', type=int, default=1024,
help='dimension of layers for drug response block')
parser.add_argument('--resp_num_layers_per_block', type=int, default=2,
help='number of layers for drug response res block')
parser.add_argument('--resp_num_blocks', type=int, default=2,
help='number of residual blocks for drug response')
parser.add_argument('--resp_num_layers', type=int, default=2,
help='number of layers for drug response')
parser.add_argument('--resp_dropout', type=float, default=0.0,
help='dropout of residual blocks for drug response')
parser.add_argument('--resp_activation', type=str, default='none',
help='activation for response prediction output',
choices=['sigmoid', 'tanh', 'none'])
# Cell line classification network(s)
parser.add_argument('--cl_clf_layer_dim', type=int, default=256,
help='layer dimension for cell line classification')
parser.add_argument('--cl_clf_num_layers', type=int, default=1,
help='number of layers for cell line classification')
# Drug target family classification network
parser.add_argument('--drug_target_layer_dim', type=int, default=512,
help='dimension of layers for drug target prediction')
parser.add_argument('--drug_target_num_layers', type=int, default=2,
help='number of layers for drug target prediction')
# Drug weighted QED regression network
parser.add_argument('--drug_qed_layer_dim', type=int, default=512,
help='dimension of layers for drug QED prediction')
parser.add_argument('--drug_qed_num_layers', type=int, default=2,
help='number of layers for drug QED prediction')
parser.add_argument('--drug_qed_activation', type=str, default='none',
help='activation for drug QED prediction output',
choices=['sigmoid', 'tanh', 'none'])
# Training and validation parameters ######################################
# Drug response regression training parameters
parser.add_argument('--resp_loss_func', type=str, default='mse',
help='loss function for drug response regression',
choices=['mse', 'l1'])
parser.add_argument('--resp_opt', type=str, default='SGD',
help='optimizer for drug response regression',
choices=['SGD', 'RMSprop', 'Adam'])
parser.add_argument('--resp_lr', type=float, default=1e-5,
help='learning rate for drug response regression')
# Drug response uncertainty quantification parameters
parser.add_argument('--resp_uq', action='store_true',
help='indicator of drug response uncertainty '
'quantification using dropouts')
parser.add_argument('--resp_uq_dropout', type=float, default=0.5,
help='dropout rate for uncertainty quantification')
parser.add_argument('--resp_uq_length_scale', type=float, default=1.0,
help='Prior length-scale that captures our belief '
'over the function frequency')
parser.add_argument('--resp_uq_num_runs', type=int, default=100,
help='number of predictions (runs) for uncertainty '
'quantification')
# Cell line classification training parameters
parser.add_argument('--cl_clf_opt', type=str, default='SGD',
help='optimizer for cell line classification',
choices=['SGD', 'RMSprop', 'Adam'])
parser.add_argument('--cl_clf_lr', type=float, default=1e-3,
help='learning rate for cell line classification')
# Drug target family classification training parameters
parser.add_argument('--drug_target_opt', type=str, default='SGD',
help='optimizer for drug target classification '
'training',
choices=['SGD', 'RMSprop', 'Adam'])
parser.add_argument('--drug_target_lr', type=float, default=1e-3,
help='learning rate for drug target classification')
# Drug weighted QED regression training parameters
parser.add_argument('--drug_qed_loss_func', type=str, default='mse',
help='loss function for drug QED regression',
choices=['mse', 'l1'])
parser.add_argument('--drug_qed_opt', type=str, default='SGD',
help='optimizer for drug rQED regression',
choices=['SGD', 'RMSprop', 'Adam'])
parser.add_argument('--drug_qed_lr', type=float, default=1e-3,
help='learning rate for drug QED regression')
# Starting epoch for drug response validation
parser.add_argument('--resp_val_start_epoch', type=int, default=0,
help='starting epoch for drug response validation')
# Early stopping based on R2 score of drug response prediction
parser.add_argument('--early_stop_patience', type=int, default=5,
help='patience for early stopping based on drug '
'response validation R2 scores ')
# Global/shared training parameters
parser.add_argument('--l2_regularization', type=float, default=1e-5,
help='L2 regularization for nn weights')
parser.add_argument('--lr_decay_factor', type=float, default=0.95,
help='decay factor for learning rate')
parser.add_argument('--trn_batch_size', type=int, default=32,
help='input batch size for training')
parser.add_argument('--val_batch_size', type=int, default=256,
help='input batch size for validation')
parser.add_argument('--max_num_batches', type=int, default=1000,
help='maximum number of batches per epoch')
parser.add_argument('--max_num_epochs', type=int, default=100,
help='maximum number of epochs')
# Validation results directory
parser.add_argument('--val_results_dir', type=str, default=None,
help='directory for saved validation results. '
'Set to None to skip results saving')
# Miscellaneous settings ##################################################
parser.add_argument('--multi_gpu', action='store_true', default=False,
help='enables multiple GPU process')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--rand_state', type=int, default=0,
help='random state of numpy/sklearn/pytorch')
args = parser.parse_args()
print('Training Arguments:\n' + json.dumps(vars(args), indent=4))
# Setting up random seed for reproducible and deterministic results
seed_random_state(args.rand_state)
# Computation device config (cuda or cpu)
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
# Data loaders for training/validation ####################################
dataloader_kwargs = {
'timeout': 1,
'shuffle': 'True',
# 'num_workers': multiprocessing.cpu_count() if use_cuda else 0,
'num_workers': NUM_WORKER if use_cuda else 0,
'pin_memory': True if use_cuda else False, }
# Drug response dataloaders for training/validation
drug_resp_dataset_kwargs = {
'data_root': DATA_ROOT,
'rand_state': args.rand_state,
'summary': False,
'int_dtype': np.int8,
'float_dtype': np.float16,
'output_dtype': np.float32,
'lat_scaling': args.lat_scaling,
'grth_scaling': args.grth_scaling,
'dscptr_scaling': args.dscptr_scaling,
'rnaseq_scaling': args.rnaseq_scaling,
'dscptr_nan_threshold': args.dscptr_nan_threshold,
'rnaseq_feature_usage': args.rnaseq_feature_usage,
'drug_feature_usage': args.drug_feature_usage,
'validation_ratio': args.validation_ratio,
'disjoint_drugs': args.disjoint_drugs,
'disjoint_cells': args.disjoint_cells, }
drug_resp_trn_loader = torch.utils.data.DataLoader(
DrugRespDataset(data_src=args.trn_src,
training=True,
**drug_resp_dataset_kwargs),
batch_size=args.trn_batch_size,
**dataloader_kwargs)
# List of data loaders for different validation sets
drug_resp_val_loaders = [torch.utils.data.DataLoader(
DrugRespDataset(data_src=src,
training=False,
**drug_resp_dataset_kwargs),
batch_size=args.val_batch_size,
**dataloader_kwargs) for src in args.val_srcs]
# Cell line classification dataloaders for training/validation
cl_clf_dataset_kwargs = {
'data_root': DATA_ROOT,
'rand_state': args.rand_state,
'summary': False,
'int_dtype': np.int8,
'float_dtype': np.float16,
'output_dtype': np.float32,
'rnaseq_scaling': args.rnaseq_scaling,
'rnaseq_feature_usage': args.rnaseq_feature_usage,
'validation_ratio': args.validation_ratio, }
cl_clf_trn_loader = torch.utils.data.DataLoader(
CLClassDataset(training=True,
**cl_clf_dataset_kwargs),
batch_size=args.trn_batch_size,
**dataloader_kwargs)
cl_clf_val_loader = torch.utils.data.DataLoader(
CLClassDataset(training=False,
**cl_clf_dataset_kwargs),
batch_size=args.val_batch_size,
**dataloader_kwargs)
# Drug target family classification dataloaders for training/validation
drug_target_dataset_kwargs = {
'data_root': DATA_ROOT,
'rand_state': args.rand_state,
'summary': False,
'int_dtype': np.int8,
'float_dtype': np.float16,
'output_dtype': np.float32,
'dscptr_scaling': args.dscptr_scaling,
'dscptr_nan_threshold': args.dscptr_nan_threshold,
'drug_feature_usage': args.drug_feature_usage,
'validation_ratio': args.validation_ratio, }
drug_target_trn_loader = torch.utils.data.DataLoader(
DrugTargetDataset(training=True,
**drug_target_dataset_kwargs),
batch_size=args.trn_batch_size,
**dataloader_kwargs)
drug_target_val_loader = torch.utils.data.DataLoader(
DrugTargetDataset(training=False,
**drug_target_dataset_kwargs),
batch_size=args.val_batch_size,
**dataloader_kwargs)
# Drug weighted QED regression dataloaders for training/validation
drug_qed_dataset_kwargs = {
'data_root': DATA_ROOT,
'rand_state': args.rand_state,
'summary': False,
'int_dtype': np.int8,
'float_dtype': np.float16,
'output_dtype': np.float32,
'qed_scaling': args.qed_scaling,
'dscptr_scaling': args.dscptr_scaling,
'dscptr_nan_threshold': args.dscptr_nan_threshold,
'drug_feature_usage': args.drug_feature_usage,
'validation_ratio': args.validation_ratio, }
drug_qed_trn_loader = torch.utils.data.DataLoader(
DrugQEDDataset(training=True,
**drug_qed_dataset_kwargs),
batch_size=args.trn_batch_size,
**dataloader_kwargs)
drug_qed_val_loader = torch.utils.data.DataLoader(
DrugQEDDataset(training=False,
**drug_qed_dataset_kwargs),
batch_size=args.val_batch_size,
**dataloader_kwargs)
# Constructing and initializing neural networks ###########################
# Autoencoder training hyper-parameters
ae_training_kwarg = {
'ae_loss_func': 'mse',
'ae_opt': 'sgd',
'ae_lr': 2e-1,
'lr_decay_factor': 1.0,
'max_num_epochs': 1000,
'early_stop_patience': 50, }
encoder_kwarg = {
'model_folder': './models/',
'data_root': DATA_ROOT,
'autoencoder_init': args.autoencoder_init,
'training_kwarg': ae_training_kwarg,
'device': device,
'verbose': True,
'rand_state': args.rand_state, }
# Get RNA sequence encoder
gene_encoder = get_gene_encoder(
rnaseq_feature_usage=args.rnaseq_feature_usage,
rnaseq_scaling=args.rnaseq_scaling,
layer_dim=args.gene_layer_dim,
num_layers=args.gene_num_layers,
latent_dim=args.gene_latent_dim,
**encoder_kwarg)
# Get drug feature encoder
drug_encoder = get_drug_encoder(
drug_feature_usage=args.drug_feature_usage,
dscptr_scaling=args.dscptr_scaling,
dscptr_nan_threshold=args.dscptr_nan_threshold,
layer_dim=args.drug_layer_dim,
num_layers=args.drug_num_layers,
latent_dim=args.drug_latent_dim,
**encoder_kwarg)
# Regressor for drug response
resp_net = RespNet(
gene_latent_dim=args.gene_latent_dim,
drug_latent_dim=args.drug_latent_dim,
gene_encoder=gene_encoder,
drug_encoder=drug_encoder,
resp_layer_dim=args.resp_layer_dim,
resp_num_layers_per_block=args.resp_num_layers_per_block,
resp_num_blocks=args.resp_num_blocks,
resp_num_layers=args.resp_num_layers,
resp_dropout=args.resp_dropout,
resp_activation=args.resp_activation).to(device)
print(resp_net)
# # Sequence classifier for category, site, and type
# cl_clf_net_kwargs = {
# 'encoder': gene_encoder,
# 'input_dim': args.gene_latent_dim,
# 'condition_dim': len(get_label_dict(DATA_ROOT, 'data_src_dict.txt')),
# 'layer_dim': args.cl_clf_layer_dim,
# 'num_layers': args.cl_clf_num_layers, }
#
# category_clf_net = ClfNet(
# num_classes=len(get_label_dict(DATA_ROOT, 'category_dict.txt')),
# **cl_clf_net_kwargs).to(device)
# site_clf_net = ClfNet(
# num_classes=len(get_label_dict(DATA_ROOT, 'site_dict.txt')),
# **cl_clf_net_kwargs).to(device)
# type_clf_net = ClfNet(
# num_classes=len(get_label_dict(DATA_ROOT, 'type_dict.txt')),
# **cl_clf_net_kwargs).to(device)
#
# # Classifier for drug target family prediction
# drug_target_net = ClfNet(
# encoder=drug_encoder,
# input_dim=args.drug_latent_dim,
# condition_dim=0,
# layer_dim=args.drug_target_layer_dim,
# num_layers=args.drug_target_num_layers,
# num_classes=len(get_label_dict(DATA_ROOT, 'drug_target_dict.txt'))).\
# to(device)
#
# # Regressor for drug weighted QED prediction
# drug_qed_net = RgsNet(
# encoder=drug_encoder,
# input_dim=args.drug_latent_dim,
# condition_dim=0,
# layer_dim=args.drug_qed_layer_dim,
# num_layers=args.drug_qed_num_layers,
# activation=args.drug_qed_activation).to(device)
# Multi-GPU settings
if args.multi_gpu:
resp_net = nn.DataParallel(resp_net)
# category_clf_net = nn.DataParallel(category_clf_net)
# site_clf_net = nn.DataParallel(site_clf_net)
# type_clf_net = nn.DataParallel(type_clf_net)
# drug_target_net = nn.DataParallel(drug_target_net)
# drug_qed_net = nn.DataParallel(drug_qed_net)
# Optimizers, learning rate decay, and miscellaneous ######################
resp_opt = get_optimizer(opt_type=args.resp_opt,
networks=resp_net,
learning_rate=args.resp_lr,
l2_regularization=args.l2_regularization)
# cl_clf_opt = get_optimizer(opt_type=args.cl_clf_opt,
# networks=[category_clf_net,
# site_clf_net,
# type_clf_net],
# learning_rate=args.cl_clf_lr,
# l2_regularization=args.l2_regularization)
# drug_target_opt = get_optimizer(opt_type=args.drug_target_opt,
# networks=drug_target_net,
# learning_rate=args.drug_target_lr,
# l2_regularization=args.l2_regularization)
# drug_qed_opt = get_optimizer(opt_type=args.drug_qed_opt,
# networks=drug_qed_net,
# learning_rate=args.drug_qed_lr,
# l2_regularization=args.l2_regularization)
resp_lr_decay = LambdaLR(optimizer=resp_opt,
lr_lambda=lambda e:
args.lr_decay_factor ** e)
# cl_clf_lr_decay = LambdaLR(optimizer=cl_clf_opt,
# lr_lambda=lambda e:
# args.lr_decay_factor ** e)
# drug_target_lr_decay = LambdaLR(optimizer=drug_target_opt,
# lr_lambda=lambda e:
# args.lr_decay_factor ** e)
# drug_qed_lr_decay = LambdaLR(optimizer=drug_qed_opt,
# lr_lambda=lambda e:
# args.lr_decay_factor ** e)
resp_loss_func = F.l1_loss if args.resp_loss_func == 'l1' \
else F.mse_loss
drug_qed_loss_func = F.l1_loss if args.drug_qed_loss_func == 'l1' \
else F.mse_loss
# Training/validation loops ###############################################
val_cl_clf_acc = []
val_drug_target_acc = []
val_drug_qed_mse, val_drug_qed_mae, val_drug_qed_r2 = [], [], []
val_resp_mse, val_resp_mae, val_resp_r2 = [], [], []
best_r2 = -np.inf
patience = 0
start_time = time.time()
# Create folder for validation results if not exist
if args.val_results_dir.lower() != 'none':
try:
os.makedirs(args.val_results_dir)
except OSError as e:
if e.errno != errno.EEXIST:
raise
else:
args.val_results_dir = None
# Early stopping is decided on the validation set with the same
# data source as the training dataloader
val_index = 0
for idx, loader in enumerate(drug_resp_val_loaders):
if loader.dataset.data_source == args.trn_src:
val_index = idx
for epoch in range(args.max_num_epochs):
print('=' * 80 + '\nTraining Epoch %3i:' % (epoch + 1))
epoch_start_time = time.time()
resp_lr_decay.step(epoch)
# cl_clf_lr_decay.step(epoch)
# drug_target_lr_decay.step(epoch)
# drug_qed_lr_decay.step(epoch)
# # Training cell line classifier
# train_cl_clf(device=device,
# category_clf_net=category_clf_net,
# site_clf_net=site_clf_net,
# type_clf_net=type_clf_net,
# data_loader=cl_clf_trn_loader,
# max_num_batches=args.max_num_batches,
# optimizer=cl_clf_opt)
#
# # Training drug target classifier
# train_drug_target(device=device,
# drug_target_net=drug_target_net,
# data_loader=drug_target_trn_loader,
# max_num_batches=args.max_num_batches,
# optimizer=drug_target_opt)
#
# # Training drug weighted QED regressor
# train_drug_qed(device=device,
# drug_qed_net=drug_qed_net,
# data_loader=drug_qed_trn_loader,
# max_num_batches=args.max_num_batches,
# loss_func=drug_qed_loss_func,
# optimizer=drug_qed_opt)
# Training drug response regressor
train_resp(device=device,
resp_net=resp_net,
data_loader=drug_resp_trn_loader,
max_num_batches=args.max_num_batches,
loss_func=resp_loss_func,
optimizer=resp_opt)
print('\nValidation Results:')
if epoch >= args.resp_val_start_epoch:
# # Validating cell line classifier
# cl_category_acc, cl_site_acc, cl_type_acc = \
# valid_cl_clf(device=device,
# category_clf_net=category_clf_net,
# site_clf_net=site_clf_net,
# type_clf_net=type_clf_net,
# data_loader=cl_clf_val_loader, )
# val_cl_clf_acc.append([cl_category_acc, cl_site_acc, cl_type_acc])
#
# # Validating drug target classifier
# drug_target_acc = \
# valid_drug_target(device=device,
# drug_target_net=drug_target_net,
# data_loader=drug_target_val_loader)
# val_drug_target_acc.append(drug_target_acc)
#
# # Validating drug weighted QED regressor
# drug_qed_mse, drug_qed_mae, drug_qed_r2 = \
# valid_drug_qed(device=device,
# drug_qed_net=drug_qed_net,
# data_loader=drug_qed_val_loader)
# val_drug_qed_mse.append(drug_qed_mse)
# val_drug_qed_mae.append(drug_qed_mae)
# val_drug_qed_r2.append(drug_qed_r2)
# Validating drug response regressor
resp_mse, resp_mae, resp_r2 = \
valid_resp(epoch=epoch,
trn_src=args.trn_src,
device=device,
resp_net=resp_net,
data_loaders=drug_resp_val_loaders,
resp_uq=args.resp_uq,
resp_uq_dropout=args.resp_uq_dropout,
resp_uq_num_runs=args.resp_uq_num_runs,
val_results_dir=args.val_results_dir)
# Save the validation results in nested list
val_resp_mse.append(resp_mse)
val_resp_mae.append(resp_mae)
val_resp_r2.append(resp_r2)
# Record the best R2 score (same data source)
# and check for early stopping if no improvement for epochs
if resp_r2[val_index] > best_r2:
patience = 0
best_r2 = resp_r2[val_index]
else:
patience += 1
if patience >= args.early_stop_patience:
print('Validation results does not improve for %d epochs ... '
'invoking early stopping.' % patience)
break
print('Epoch Running Time: %.1f Seconds.'
% (time.time() - epoch_start_time))
# val_cl_clf_acc = np.array(val_cl_clf_acc).reshape(-1, 3)
# val_drug_target_acc = np.array(val_drug_target_acc)
# val_drug_qed_mse = np.array(val_drug_qed_mse)
# val_resp_mae = np.array(val_resp_mae)
val_resp_r2 = np.array(val_resp_r2)
val_resp_mse, val_resp_mae, val_resp_r2 = \
np.array(val_resp_mse).reshape(-1, len(args.val_srcs)), \
np.array(val_resp_mae).reshape(-1, len(args.val_srcs)), \
np.array(val_resp_r2).reshape(-1, len(args.val_srcs))
print('Program Running Time: %.1f Seconds.' % (time.time() - start_time))
# Print overall validation results
print('=' * 80)
print('Overall Validation Results:\n')
print('\tBest Results from Different Models (Epochs):')
# # Print best accuracy for cell line classifiers
# clf_targets = ['Cell Line Categories',
# 'Cell Line Sites',
# 'Cell Line Types', ]
# best_acc = np.amax(val_cl_clf_acc, axis=0)
# best_acc_epochs = np.argmax(val_cl_clf_acc, axis=0)
#
# for index, clf_target in enumerate(clf_targets):
# print('\t\t%-24s Best Accuracy: %.3f%% (Epoch = %3d)'
# % (clf_target, best_acc[index],
# best_acc_epochs[index] + 1 + args.resp_val_start_epoch))
#
# # Print best predictions for drug classifiers and regressor
# print('\t\tDrug Target Family \t Best Accuracy: %.3f%% (Epoch = %3d)'
# % (np.max(val_drug_target_acc),
# (np.argmax(val_drug_target_acc) +
# 1 + args.resp_val_start_epoch)))
#
# print('\t\tDrug Weighted QED \t Best R2 Score: %+6.4f '
# '(Epoch = %3d, MSE = %8.6f, MAE = %8.6f)'
# % (np.max(val_drug_qed_r2),
# (np.argmax(val_drug_qed_r2) +
# 1 + args.resp_val_start_epoch),
# val_drug_qed_mse[np.argmax(val_drug_qed_r2)],
# val_drug_qed_mae[np.argmax(val_drug_qed_r2)]))
# Print best R2 scores for drug response regressor
val_data_sources = \
[loader.dataset.data_source for loader in drug_resp_val_loaders]
best_r2 = np.amax(val_resp_r2, axis=0)
best_r2_epochs = np.argmax(val_resp_r2, axis=0)
for index, data_source in enumerate(val_data_sources):
print('\t\t%-6s \t Best R2 Score: %+6.4f '
'(Epoch = %3d, MSE = %8.2f, MAE = %6.2f)'
% (data_source, best_r2[index],
best_r2_epochs[index] + args.resp_val_start_epoch + 1,
val_resp_mse[best_r2_epochs[index], index],
val_resp_mae[best_r2_epochs[index], index]))
# Print best epoch and all the corresponding validation results
# Picking the best epoch using R2 score from same data source
best_epoch = val_resp_r2[:, val_index].argmax()
print('\n\tBest Results from the Same Model (Epoch = %3d):'
% (best_epoch + 1 + args.resp_val_start_epoch))
# for index, clf_target in enumerate(clf_targets):
# print('\t\t%-24s Accuracy: %.3f%%'
# % (clf_target, val_cl_clf_acc[best_epoch, index]))
#
# # Print best predictions for drug classifiers and regressor
# print('\t\tDrug Target Family \t Accuracy: %.3f%% '
# % (val_drug_target_acc[best_epoch]))
#
# print('\t\tDrug Weighted QED \t R2 Score: %+6.4f '
# '(MSE = %8.6f, MAE = %6.6f)'
# % (val_drug_qed_r2[best_epoch],
# val_drug_qed_mse[best_epoch],
# val_drug_qed_mae[best_epoch]))
for index, data_source in enumerate(val_data_sources):
print('\t\t%-6s \t R2 Score: %+6.4f '
'(MSE = %8.2f, MAE = %6.2f)'
% (data_source,
val_resp_r2[best_epoch, index],
val_resp_mse[best_epoch, index],
val_resp_mae[best_epoch, index]))
# Use ./launcher.py for more convenient calling and logging
main()