-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrials_levels.py
79 lines (71 loc) · 2.54 KB
/
trials_levels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import itertools
import SVM
import pandas as pd
import csv
import time
import json
if __name__ == "__main__":
constants_file_path = "./constants.json"
output_csv_file_path = "./trials_levels.csv"
with open(constants_file_path, "r") as handler:
constants = json.load(handler)
v1 = constants["v1"]
v2 = constants["v2"]
v3 = constants["v3"]
v4 = constants["v4"]
v5 = constants["v5"]
v6 = constants["v6"]
v7 = constants["v7"]
v8 = constants["v8"]
all_features = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8
level2_features = list(filter(lambda x: "2" in x, all_features))
level3_features = list(filter(lambda x: "3" in x, all_features))
level4_features = list(filter(lambda x: "4" in x, all_features))
level5_features = list(filter(lambda x: "5" in x, all_features))
level6_features = list(filter(lambda x: "6" in x, all_features))
level7_features = list(filter(lambda x: "7" in x, all_features))
level8_features = list(filter(lambda x: "8" in x, all_features))
level9_features = list(filter(lambda x: "9" in x, all_features))
level10_features = list(filter(lambda x: "10" in x, all_features))
level1_features = [
item
for item in list(filter(lambda x: "1" in x, all_features))
if item not in level10_features
]
with open(output_csv_file_path, "a") as csvFile:
row = [
"Name",
"Accuracy",
"Precision",
"Recall",
"Filename",
"Time Taken",
]
writer = csv.writer(csvFile)
writer.writerow(row)
start_time = time.time()
df = pd.read_csv(r"./kucoin_eth-usdt.csv")
output_name = "level1-5_2"
df = df.drop(
columns=(
level1_features
+ level2_features
+ level3_features
+ level4_features
+ level5_features
)
)
a, p, r, yp, yt, fn = SVM.main2(df, output_name)
with open(output_csv_file_path, "a") as csvFile:
row = [output_name, a, p, r, fn, str(time.time() - start_time)]
writer = csv.writer(csvFile)
writer.writerow(row)
start_time = time.time()
df = pd.read_csv(r"./kucoin_eth-usdt.csv")
output_name = "level1-3_2"
df = df.drop(columns=(level1_features + level2_features + level3_features))
a, p, r, yp, yt, fn = SVM.main2(df, output_name)
with open(output_csv_file_path, "a") as csvFile:
row = [output_name, a, p, r, fn, str(time.time() - start_time)]
writer = csv.writer(csvFile)
writer.writerow(row)