forked from Sygil-Dev/sygil-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebui_streamlit.py
2256 lines (1831 loc) · 101 KB
/
webui_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import warnings
import streamlit as st
from streamlit import StopException, StreamlitAPIException
import base64, cv2
import argparse, os, sys, glob, re, random, datetime
from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps
from PIL.PngImagePlugin import PngInfo
import requests
from scipy import integrate
import torch
from torchdiffeq import odeint
from tqdm.auto import trange, tqdm
import k_diffusion as K
import math
import mimetypes
import numpy as np
import pynvml
import threading, asyncio
import time, inspect
import torch
from torch import autocast
from torchvision import transforms
import torch.nn as nn
import yaml
from typing import List, Union
from pathlib import Path
from tqdm import tqdm
from contextlib import contextmanager, nullcontext
from einops import rearrange, repeat
from itertools import islice
from omegaconf import OmegaConf
from io import BytesIO
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.util import instantiate_from_config
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
extract_into_tensor
from retry import retry
# these are for testing txt2vid, should be removed and we should use things from our own code.
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
#will be used for saving and reading a video made by the txt2vid function
import imageio, io
# we use python-slugify to make the filenames safe for windows and linux, its better than doing it manually
# install it with 'pip install python-slugify'
from slugify import slugify
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging
logging.set_verbosity_error()
except:
pass
# remove some annoying deprecation warnings that show every now and then.
warnings.filterwarnings("ignore", category=DeprecationWarning)
defaults = OmegaConf.load("configs/webui/webui_streamlit.yaml")
if (os.path.exists("configs/webui/userconfig_streamlit.yaml")):
user_defaults = OmegaConf.load("configs/webui/userconfig_streamlit.yaml");
defaults = OmegaConf.merge(defaults, user_defaults)
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
mimetypes.init()
mimetypes.add_type('application/javascript', '.js')
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
# should and will be moved to a settings menu in the UI at some point
grid_format = [s.lower() for s in defaults.general.grid_format.split(':')]
grid_lossless = False
grid_quality = 100
if grid_format[0] == 'png':
grid_ext = 'png'
grid_format = 'png'
elif grid_format[0] in ['jpg', 'jpeg']:
grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100
grid_ext = 'jpg'
grid_format = 'jpeg'
elif grid_format[0] == 'webp':
grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100
grid_ext = 'webp'
grid_format = 'webp'
if grid_quality < 0: # e.g. webp:-100 for lossless mode
grid_lossless = True
grid_quality = abs(grid_quality)
# this should force GFPGAN and RealESRGAN onto the selected gpu as well
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = str(defaults.general.gpu)
@retry(tries=5)
def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=False, RealESRGAN_model="RealESRGAN_x4plus",
CustomModel_available=False, custom_model="Stable Diffusion v1.4"):
"""Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """
print ("Loading models.")
# Generate random run ID
# Used to link runs linked w/ continue_prev_run which is not yet implemented
# Use URL and filesystem safe version just in case.
st.session_state["run_id"] = base64.urlsafe_b64encode(
os.urandom(6)
).decode("ascii")
# check what models we want to use and if the they are already loaded.
if use_GFPGAN:
if "GFPGAN" in st.session_state:
print("GFPGAN already loaded")
else:
# Load GFPGAN
if os.path.exists(defaults.general.GFPGAN_dir):
try:
st.session_state["GFPGAN"] = load_GFPGAN()
print("Loaded GFPGAN")
except Exception:
import traceback
print("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
if "GFPGAN" in st.session_state:
del st.session_state["GFPGAN"]
if use_RealESRGAN:
if "RealESRGAN" in st.session_state and st.session_state["RealESRGAN"].model.name == RealESRGAN_model:
print("RealESRGAN already loaded")
else:
#Load RealESRGAN
try:
# We first remove the variable in case it has something there,
# some errors can load the model incorrectly and leave things in memory.
del st.session_state["RealESRGAN"]
except KeyError:
pass
if os.path.exists(defaults.general.RealESRGAN_dir):
# st.session_state is used for keeping the models in memory across multiple pages or runs.
st.session_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model)
print("Loaded RealESRGAN with model "+ st.session_state["RealESRGAN"].model.name)
else:
if "RealESRGAN" in st.session_state:
del st.session_state["RealESRGAN"]
if "model" in st.session_state:
if "model" in st.session_state and st.session_state["custom_model"] == custom_model:
print("Model already loaded")
else:
try:
del st.session_state["model"]
except KeyError:
pass
config = OmegaConf.load(defaults.general.default_model_config)
if custom_model == defaults.general.default_model:
model = load_model_from_config(config, defaults.general.default_model_path)
else:
model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt"))
st.session_state["custom_model"] = custom_model
st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu")
st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] )
else:
config = OmegaConf.load(defaults.general.default_model_config)
if custom_model == defaults.general.default_model:
model = load_model_from_config(config, defaults.general.default_model_path)
else:
model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt"))
st.session_state["custom_model"] = custom_model
st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu")
st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] )
print("Model loaded.")
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def load_sd_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
#
@retry(tries=5)
def generation_callback(img, i=0):
try:
if i == 0:
if img['i']: i = img['i']
except TypeError:
pass
if i % int(defaults.general.update_preview_frequency) == 0 and defaults.general.update_preview:
#print (img)
#print (type(img))
# The following lines will convert the tensor we got on img to an actual image we can render on the UI.
# It can probably be done in a better way for someone who knows what they're doing. I don't.
#print (img,isinstance(img, torch.Tensor))
if isinstance(img, torch.Tensor):
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img)
else:
# When using the k Diffusion samplers they return a dict instead of a tensor that look like this:
# {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img["denoised"])
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0))
# update image on the UI so we can see the progress
st.session_state["preview_image"].image(pil_image)
# Show a progress bar so we can keep track of the progress even when the image progress is not been shown,
# Dont worry, it doesnt affect the performance.
if st.session_state["generation_mode"] == "txt2img":
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
st.session_state["progress_bar_text"].text(
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%")
else:
if st.session_state["generation_mode"] == "img2img":
round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"])
percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps))
st.session_state["progress_bar_text"].text(
f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""")
else:
if st.session_state["generation_mode"] == "txt2vid":
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
st.session_state["progress_bar_text"].text(
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}"
f"{percent if percent < 100 else 100}%")
st.session_state["progress_bar"].progress(percent if percent < 100 else 100)
class MemUsageMonitor(threading.Thread):
stop_flag = False
max_usage = 0
total = -1
def __init__(self, name):
threading.Thread.__init__(self)
self.name = name
def run(self):
try:
pynvml.nvmlInit()
except:
print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n")
return
print(f"[{self.name}] Recording max memory usage...\n")
handle = pynvml.nvmlDeviceGetHandleByIndex(defaults.general.gpu)
self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total
while not self.stop_flag:
m = pynvml.nvmlDeviceGetMemoryInfo(handle)
self.max_usage = max(self.max_usage, m.used)
# print(self.max_usage)
time.sleep(0.1)
print(f"[{self.name}] Stopped recording.\n")
pynvml.nvmlShutdown()
def read(self):
return self.max_usage, self.total
def stop(self):
self.stop_flag = True
def read_and_stop(self):
self.stop_flag = True
return self.max_usage, self.total
class CFGMaskedDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi):
x_in = x
x_in = torch.cat([x_in] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
denoised = uncond + (cond - uncond) * cond_scale
if mask is not None:
assert x0 is not None
img_orig = x0
mask_inv = 1. - mask
denoised = (img_orig * mask_inv) + (mask * denoised)
return denoised
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device)
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
"""Constructs an exponential noise schedule."""
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
return append_zero(sigmas)
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
"""Constructs a continuous VP noise schedule."""
t = torch.linspace(1, eps_s, n, device=device)
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
return append_zero(sigmas)
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
def linear_multistep_coeff(order, t, i, j):
if order - 1 > i:
raise ValueError(f'Order {order} too high for step {i}')
def fn(tau):
prod = 1.
for k in range(order):
if j == k:
continue
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
return prod
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
class KDiffusionSampler:
def __init__(self, m, sampler):
self.model = m
self.model_wrap = K.external.CompVisDenoiser(m)
self.schedule = sampler
def get_sampler_name(self):
return self.schedule
def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback=None, log_every_t=None):
sigmas = self.model_wrap.get_sigmas(S)
x = x_T * sigmas[0]
model_wrap_cfg = CFGDenoiser(self.model_wrap)
samples_ddim = None
samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas,
extra_args={'cond': conditioning, 'uncond': unconditional_conditioning,
'cond_scale': unconditional_guidance_scale}, disable=False, callback=generation_callback)
#
return samples_ddim, None
@torch.no_grad()
def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
v = torch.randint_like(x, 2) * 2 - 1
fevals = 0
def ode_fn(sigma, x):
nonlocal fevals
with torch.enable_grad():
x = x[0].detach().requires_grad_()
denoised = model(x, sigma * s_in, **extra_args)
d = to_d(x, sigma, denoised)
fevals += 1
grad = torch.autograd.grad((d * v).sum(), x)[0]
d_ll = (v * grad).flatten(1).sum(1)
return d.detach(), d_ll
x_min = x, x.new_zeros([x.shape[0]])
t = x.new_tensor([sigma_min, sigma_max])
sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
latent, delta_ll = sol[0][-1], sol[1][-1]
ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
return ll_prior + delta_ll, {'fevals': fevals}
def create_random_tensors(shape, seeds):
xs = []
for seed in seeds:
torch.manual_seed(seed)
# randn results depend on device; gpu and cpu get different results for same seed;
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
# but the original script had it like this so i do not dare change it for now because
# it will break everyone's seeds.
xs.append(torch.randn(shape, device=defaults.general.gpu))
x = torch.stack(xs)
return x
def torch_gc():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def load_GFPGAN():
model_name = 'GFPGANv1.3'
model_path = os.path.join(defaults.general.GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
if not os.path.isfile(model_path):
raise Exception("GFPGAN model not found at path "+model_path)
sys.path.append(os.path.abspath(defaults.general.GFPGAN_dir))
from gfpgan import GFPGANer
if defaults.general.gfpgan_cpu or defaults.general.extra_models_cpu:
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
elif defaults.general.extra_models_gpu:
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gfpgan_gpu}'))
else:
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gpu}'))
return instance
def load_RealESRGAN(model_name: str):
from basicsr.archs.rrdbnet_arch import RRDBNet
RealESRGAN_models = {
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
}
model_path = os.path.join(defaults.general.RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
if not os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{model_name}.pth")):
raise Exception(model_name+".pth not found at path "+model_path)
sys.path.append(os.path.abspath(defaults.general.RealESRGAN_dir))
from realesrgan import RealESRGANer
if defaults.general.esrgan_cpu or defaults.general.extra_models_cpu:
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) # cpu does not support half
instance.device = torch.device('cpu')
instance.model.to('cpu')
elif defaults.general.extra_models_gpu:
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.esrgan_gpu}'))
else:
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.gpu}'))
instance.model.name = model_name
return instance
prompt_parser = re.compile("""
(?P<prompt> # capture group for 'prompt'
[^:]+ # match one or more non ':' characters
) # end 'prompt'
(?: # non-capture group
:+ # match one or more ':' characters
(?P<weight> # capture group for 'weight'
-?\\d+(?:\\.\\d+)? # match positive or negative decimal number
)? # end weight capture group, make optional
\\s* # strip spaces after weight
| # OR
$ # else, if no ':' then match end of line
) # end non-capture group
""", re.VERBOSE)
# grabs all text up to the first occurrence of ':' as sub-prompt
# takes the value following ':' as weight
# if ':' has no value defined, defaults to 1.0
# repeats until no text remaining
def split_weighted_subprompts(input_string, normalize=True):
parsed_prompts = [(match.group("prompt"), float(match.group("weight") or 1)) for match in re.finditer(prompt_parser, input_string)]
if not normalize:
return parsed_prompts
# this probably still doesn't handle negative weights very well
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995):
v0 = v0.detach().cpu().numpy()
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
v2 = torch.from_numpy(v2).to(device)
return v2
# -----------------------------------------------------------------------------
@torch.no_grad()
def diffuse(
pipe,
cond_embeddings, # text conditioning, should be (1, 77, 768)
cond_latents, # image conditioning, should be (1, 4, 64, 64)
num_inference_steps,
guidance_scale,
eta,
):
torch_device = cond_latents.get_device()
# classifier guidance: add the unconditional embedding
max_length = cond_embeddings.shape[1] # 77
uncond_input = pipe.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, cond_embeddings])
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
if isinstance(pipe.scheduler, LMSDiscreteScheduler):
cond_latents = cond_latents * pipe.scheduler.sigmas[0]
# init the scheduler
accepts_offset = "offset" in set(inspect.signature(pipe.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
pipe.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
step_counter = 0
# diffuse!
for i, t in enumerate(pipe.scheduler.timesteps):
# expand the latents for classifier free guidance
latent_model_input = torch.cat([cond_latents] * 2)
if isinstance(pipe.scheduler, LMSDiscreteScheduler):
sigma = pipe.scheduler.sigmas[i]
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# cfg
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
if isinstance(pipe.scheduler, LMSDiscreteScheduler):
cond_latents = pipe.scheduler.step(noise_pred, i, cond_latents, **extra_step_kwargs)["prev_sample"]
else:
cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"]
#update the preview image if it is enabled and the frequency matches the step_counter
#if st.session_state["update_preview"]:
# if st.session_state["update_preview_frequency"] == step_counter:
# scale and decode the image latents with vae
cond_latents_2 = 1 / 0.18215 * cond_latents
image_2 = pipe.vae.decode(cond_latents_2)
# generate output numpy image as uint8
image_2 = (image_2 / 2 + 0.5).clamp(0, 1)
image_2 = image_2.cpu().permute(0, 2, 3, 1).numpy()
image_2 = (image_2[0] * 255).astype(np.uint8)
st.session_state["preview_image"].image(image_2)
#step_counter = 0
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
frames_percent = int(100 * float(st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames)/float(st.session_state.max_frames))
st.session_state["progress_bar_text"].text(
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} "
f"{percent if percent < 100 else 100}% "
f"Frame: {st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames}/{st.session_state.max_frames} "
f"{frames_percent if frames_percent < 100 else 100}% "
)
st.session_state["progress_bar"].progress(percent if percent < 100 else 100)
# scale and decode the image latents with vae
cond_latents = 1 / 0.18215 * cond_latents
image = pipe.vae.decode(cond_latents)
# generate output numpy image as uint8
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image[0] * 255).astype(np.uint8)
return image
def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'):
#get global variables
global_vars = globals()
#check if m is in globals
if unload:
for m in models:
if m in global_vars:
#if it is, delete it
del global_vars[m]
if defaults.general.optimized:
if m == 'model':
del global_vars[m+'FS']
del global_vars[m+'CS']
if m =='model':
m='Stable Diffusion'
print('Unloaded ' + m)
if load:
for m in models:
if m not in global_vars or m in global_vars and type(global_vars[m]) == bool:
#if it isn't, load it
if m == 'GFPGAN':
global_vars[m] = load_GFPGAN()
elif m == 'model':
sdLoader = load_sd_from_config()
global_vars[m] = sdLoader[0]
if defaults.general.optimized:
global_vars[m+'CS'] = sdLoader[1]
global_vars[m+'FS'] = sdLoader[2]
elif m == 'RealESRGAN':
global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name)
elif m == 'LDSR':
global_vars[m] = load_LDSR()
if m =='model':
m='Stable Diffusion'
print('Loaded ' + m)
torch_gc()
def get_font(fontsize):
fonts = ["arial.ttf", "DejaVuSans.ttf"]
for font_name in fonts:
try:
return ImageFont.truetype(font_name, fontsize)
except OSError:
pass
# ImageFont.load_default() is practically unusable as it only supports
# latin1, so raise an exception instead if no usable font was found
raise Exception(f"No usable font found (tried {', '.join(fonts)})")
def load_embeddings(fp):
if fp is not None and hasattr(st.session_state["model"], "embedding_manager"):
st.session_state["model"].embedding_manager.load(fp['name'])
def image_grid(imgs, batch_size, force_n_rows=None, captions=None):
#print (len(imgs))
if force_n_rows is not None:
rows = force_n_rows
elif defaults.general.n_rows > 0:
rows = defaults.general.n_rows
elif defaults.general.n_rows == 0:
rows = batch_size
else:
rows = math.sqrt(len(imgs))
rows = round(rows)
cols = math.ceil(len(imgs) / rows)
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
fnt = get_font(30)
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
if captions and i<len(captions):
d = ImageDraw.Draw( grid )
size = d.textbbox( (0,0), captions[i], font=fnt, stroke_width=2, align="center" )
d.multiline_text((i % cols * w + w/2, i // cols * h + h - size[3]), captions[i], font=fnt, fill=(255,255,255), stroke_width=2, stroke_fill=(0,0,0), anchor="mm", align="center")
return grid
def seed_to_int(s):
if type(s) is int:
return s
if s is None or s == '':
return random.randint(0, 2**32 - 1)
n = abs(int(s) if s.isdigit() else random.Random(s).randint(0, 2**32 - 1))
while n >= 2**32:
n = n >> 32
return n
def check_prompt_length(prompt, comments):
"""this function tests if prompt is too long, and if so, adds a message to comments"""
tokenizer = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer
max_length = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.max_length
info = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length,
return_overflowing_tokens=True, padding="max_length", return_tensors="pt")
ovf = info['overflowing_tokens'][0]
overflowing_count = ovf.shape[0]
if overflowing_count == 0:
return
vocab = {v: k for k, v in tokenizer.get_vocab().items()}
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words))
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images):
filename_i = os.path.join(sample_path_i, filename)
if not jpg_sample:
if defaults.general.save_metadata:
metadata = PngInfo()
metadata.add_text("SD:prompt", prompts[i])
metadata.add_text("SD:seed", str(seeds[i]))
metadata.add_text("SD:width", str(width))
metadata.add_text("SD:height", str(height))
metadata.add_text("SD:steps", str(steps))
metadata.add_text("SD:cfg_scale", str(cfg_scale))
metadata.add_text("SD:normalize_prompt_weights", str(normalize_prompt_weights))
if init_img is not None:
metadata.add_text("SD:denoising_strength", str(denoising_strength))
metadata.add_text("SD:GFPGAN", str(use_GFPGAN and st.session_state["GFPGAN"] is not None))
image.save(f"{filename_i}.png", pnginfo=metadata)
else:
image.save(f"{filename_i}.png")
else:
image.save(f"{filename_i}.jpg", 'jpeg', quality=100, optimize=True)
if write_info_files:
# toggles differ for txt2img vs. img2img:
offset = 0 if init_img is None else 2
toggles = []
if prompt_matrix:
toggles.append(0)
if normalize_prompt_weights:
toggles.append(1)
if init_img is not None:
if uses_loopback:
toggles.append(2)
if uses_random_seed_loopback:
toggles.append(3)
if save_individual_images:
toggles.append(2 + offset)
if save_grid:
toggles.append(3 + offset)
if sort_samples:
toggles.append(4 + offset)
if write_info_files:
toggles.append(5 + offset)
if use_GFPGAN:
toggles.append(6 + offset)
info_dict = dict(
target="txt2img" if init_img is None else "img2img",
prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name,
ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale,
seed=seeds[i], width=width, height=height
)
if init_img is not None:
# Not yet any use for these, but they bloat up the files:
#info_dict["init_img"] = init_img
#info_dict["init_mask"] = init_mask
info_dict["denoising_strength"] = denoising_strength
info_dict["resize_mode"] = resize_mode
with open(f"{filename_i}.yaml", "w", encoding="utf8") as f:
yaml.dump(info_dict, f, allow_unicode=True, width=10000)
# render the image on the frontend
st.session_state["preview_image"].image(image)
def get_next_sequence_number(path, prefix=''):
"""
Determines and returns the next sequence number to use when saving an
image in the specified directory.
If a prefix is given, only consider files whose names start with that
prefix, and strip the prefix from filenames before extracting their
sequence number.
The sequence starts at 0.
"""
result = -1
for p in Path(path).iterdir():
if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix):
tmp = p.name[len(prefix):]
try:
result = max(int(tmp.split('-')[0]), result)
except ValueError:
pass
return result + 1
def oxlamon_matrix(prompt, seed, n_iter, batch_size):
pattern = re.compile(r'(,\s){2,}')
class PromptItem:
def __init__(self, text, parts, item):
self.text = text
self.parts = parts
if item:
self.parts.append( item )
def clean(txt):
return re.sub(pattern, ', ', txt)
def getrowcount( txt ):
for data in re.finditer( ".*?\\((.*?)\\).*", txt ):
if data:
return len(data.group(1).split("|"))
break
return None
def repliter( txt ):
for data in re.finditer( ".*?\\((.*?)\\).*", txt ):
if data:
r = data.span(1)
for item in data.group(1).split("|"):
yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip())
break
def iterlist( items ):
outitems = []
for item in items:
for newitem, newpart in repliter(item.text):
outitems.append( PromptItem(newitem, item.parts.copy(), newpart) )
return outitems
def getmatrix( prompt ):
dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ]
while True:
newdataitems = iterlist( dataitems )
if len( newdataitems ) == 0:
return dataitems
dataitems = newdataitems
def classToArrays( items, seed, n_iter ):
texts = []
parts = []
seeds = []
for item in items:
itemseed = seed
for i in range(n_iter):
texts.append( item.text )
parts.append( f"Seed: {itemseed}\n" + "\n".join(item.parts) )
seeds.append( itemseed )
itemseed += 1
return seeds, texts, parts
all_seeds, all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt ), seed, n_iter)
n_iter = math.ceil(len(all_prompts) / batch_size)
needrows = getrowcount(prompt)
if needrows:
xrows = math.sqrt(len(all_prompts))
xrows = round(xrows)
# if columns is to much
cols = math.ceil(len(all_prompts) / xrows)
if cols > needrows*4:
needrows *= 2
return all_seeds, n_iter, prompt_matrix_parts, all_prompts, needrows
def process_images(
outpath, func_init, func_sample, prompt, seed, sampler_name, save_grid, batch_size,
n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name,
fp=None, ddim_eta=0.0, normalize_prompt_weights=True, init_img=None, init_mask=None,
keep_mask=False, mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, resize_mode=None, uses_loopback=False,
uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False,
variant_amount=0.0, variant_seed=None, save_individual_images: bool = True):
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
assert prompt is not None
torch_gc()
# start time after garbage collection (or before?)
start_time = time.time()
# We will use this date here later for the folder name, need to start_time if not need
run_start_dt = datetime.datetime.now()
mem_mon = MemUsageMonitor('MemMon')
mem_mon.start()
if hasattr(st.session_state["model"], "embedding_manager"):
load_embeddings(fp)
os.makedirs(outpath, exist_ok=True)
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
if not ("|" in prompt) and prompt.startswith("@"):
prompt = prompt[1:]
comments = []
prompt_matrix_parts = []
simple_templating = False
add_original_image = not (use_RealESRGAN or use_GFPGAN)
if prompt_matrix:
if prompt.startswith("@"):
simple_templating = True
add_original_image = not (use_RealESRGAN or use_GFPGAN)
all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, n_iter, batch_size)
else:
all_prompts = []
prompt_matrix_parts = prompt.split("|")
combination_count = 2 ** (len(prompt_matrix_parts) - 1)
for combination_num in range(combination_count):
current = prompt_matrix_parts[0]
for n, text in enumerate(prompt_matrix_parts[1:]):
if combination_num & (2 ** n) > 0:
current += ("" if text.strip().startswith(",") else ", ") + text
all_prompts.append(current)
n_iter = math.ceil(len(all_prompts) / batch_size)
all_seeds = len(all_prompts) * [seed]
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.")
else:
if not defaults.general.no_verify_input:
try:
check_prompt_length(prompt, comments)
except:
import traceback
print("Error verifying input:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
all_prompts = batch_size * n_iter * [prompt]
all_seeds = [seed + x for x in range(len(all_prompts))]
precision_scope = autocast if defaults.general.precision == "autocast" else nullcontext
output_images = []
grid_captions = []
stats = []
with torch.no_grad(), precision_scope("cuda"), (st.session_state["model"].ema_scope() if not defaults.general.optimized else nullcontext()):
init_data = func_init()
tic = time.time()
# if variant_amount > 0.0 create noise from base seed
base_x = None
if variant_amount > 0.0:
target_seed_randomizer = seed_to_int('') # random seed
torch.manual_seed(seed) # this has to be the single starting seed (not per-iteration)
base_x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=[seed])
# we don't want all_seeds to be sequential from starting seed with variants,
# since that makes the same variants each time,
# so we add target_seed_randomizer as a random offset