-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
306 lines (263 loc) · 12.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
""" Main function for this repo. """
import argparse
import torch
import numpy as np
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dataset import HSIlmdbDataset
from dataset import data_prefetcher
from tensorboardX import SummaryWriter
import tqdm
import os
import torch.nn as nn
import time
from RFSR import Net
import pandas as pd
import torch.optim as optim
from torchnet import meter
import torch.backends.cudnn as cudnn
from dataset import *
import scipy.io as sio
from metrics import *
import random
from util import *
def main(args):
print(args.gpus)
#os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
if args.phase is None:
print('ERROR: specify either train or test')
sys.exit(1)
if args.cuda and not torch.cuda.is_available():
print('ERROR: cuda is not available, try running on CPU')
sys.exit(1)
if args.phase == "train":
print('=============================Train=============================')
train(args)
else:
print('=============================Test==============================')
test(args)
pass
def validate(args, loader, model, criterion):
device = torch.device("cuda" if args.cuda else "cpu")
model.eval()
epoch_meter = meter.AverageValueMeter()
epoch_meter.reset()
with torch.no_grad():
for i, (lr, gt) in enumerate(loader):
lr, gt = lr.to(device), gt.to(device)
pre = model(lr)
loss = criterion(pre, gt)
epoch_meter.add(loss.item())
model.train()
return epoch_meter.value()[0]
def train(args):
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Start seed: ", args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
print('======> Loading datasets')
train_dir = os.path.join(args.dataset_dir,args.dataset,'data_train')
train_set = HSIlmdbDataset(train_dir, args.scale, args.patch_size, args.seq_len)
train_data_loader = DataLoader(train_set, num_workers=4, batch_size=args.batch_size, shuffle=True, pin_memory=True)
val_dir = os.path.join(args.dataset_dir,args.dataset,'data_val')
val_set = HSIlmdbDataset(val_dir , args.scale, args.patch_size, args.seq_len)
val_data_loader = DataLoader(val_set, num_workers=1, batch_size=1, shuffle=True, pin_memory=True)
print('======> Building model')
model = Net(args.scale, args.seq_len, device)
tmp = filter(lambda x: x.requires_grad, model.parameters())
num = sum(map(lambda x: np.prod(x.shape), tmp))
print('Total trainable tensors:', num)
start_epoch = 0
if args.resume:
if os.path.isfile(args.resume_model):
print("=> loading checkpoint '{}'".format(args.resume_model))
checkpoint = torch.load(args.resume_model)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["model"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(resume_model))
model.to(device).train()
L1_loss = torch.nn.L1Loss()
H_loss = HLoss(args.la1,args.la2)
print("======> Setting optimizer and logger")
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-8)
epoch_meter = meter.AverageValueMeter()
writer = SummaryWriter('runs/'+ args.model_type+'_'+str(time.ctime()))
print('======> Start training')
best=0
for e in range(start_epoch, args.epoch):
adjust_learning_rate(args.lr, optimizer, e+1)
epoch_meter.reset()
print("Start epoch {}, learning rate = {}".format((e+1), optimizer.param_groups[0]["lr"]))
st= time.time()
for step, (lr, hr) in enumerate(train_data_loader):
lr, hr = lr.to(device, non_blocking=True), hr.to(device, non_blocking=True)
optimizer.zero_grad()
t1 = time.time()
pre = model(lr)
loss = H_loss(pre,hr)
epoch_meter.add(loss.item())
loss.backward()
# torch.nn.utils.clip_grad_norm(net.parameters(), clip_para)
optimizer.step()
t2 = time.time()
if step % 10 == 0:
print("Epoch[{}]({}/{}): loss: {:.4f} || Timer: {:.4f} sec.".format(e+1, step, len(train_data_loader), loss.item(),(t2-t1)))
writer.add_scalar('Loss/train_loss',loss.item(), e*len(train_data_loader)+step+1)
et=time.time()
print("====Epoch[{}]: Average Loss: {:.5f} || Total time:{:.4f} sec. ".format(e+1, epoch_meter.value()[0], (et-st)))
print('======> Validation')
eval_loss = validate(args, val_data_loader, model, L1_loss)
print("====Epoch[{}]: Validation Loss: {:.5f}".format(e+1,eval_loss))
writer.add_scalar('Loss/avg_validation_loss', eval_loss, e+1)
if e==0:
best=eval_loss
save_checkpoint(args, model, e+1, args.save_ckp)
else:
if eval_loss < best:
best=eval_loss
save_checkpoint(args, model, e+1, args.save_ckp)
if (e+1)%10==0:
save_checkpoint(args, model, e+1, args.save_ckp)
writer.export_scalars_to_json("./all_scalars_json")
writer.close()
def test(args):
device = torch.device("cuda" if args.cuda else "cpu")
print(device)
print('===> Loading testset')
hr_path = get_data_paths(os.path.join(args.test_dir,'HR'))
lr_path = get_data_paths(os.path.join(args.test_dir,'LR','x'+str(args.noise)))
print('===> Start testing')
with torch.no_grad():
# loading model
#model = Net(args.scale, args.seq_len, device)
if os.path.isfile(args.test_model):
print("=> loading checkpoint '{}'".format(args.test_model))
model = torch.load(args.test_model)["model"]
else:
print('No such model')
model.to(device).eval()
xls_list=[]
psnr, sam, ssim, ergas, rmse, cc= [],[],[],[],[],[]
for index in range(len(hr_path)):
# compute output
name = os.path.split(hr_path[index])[-1]
hr = single2tensor4(uint2single(sio.loadmat(hr_path[index])['data']))
lr = single2tensor4(uint2single(sio.loadmat(lr_path[index])['LR']))
print(lr.shape)
lr = lr.to(device)
pre = chop_forward(lr, model, args.scale)
pre, hr = tensor2single(pre.clamp(0,1)), tensor2single(hr)
if args.save_results:
save_mat(pre, name[0:-4])
indices = quality_assessment(pre, hr, data_range=1., ratio=args.scale)
print("Image:{}, psnr: {:.4f} || sam: {:.4f}".format(name, indices['MPSNR'], indices['SAM']))
psnr.append(indices['MPSNR'])
sam.append(indices['SAM'])
ssim.append(indices['MSSIM'])
ergas.append(indices['ERGAS'])
rmse.append(indices['RMSE'])
cc.append(indices['CrossCorrelation'])
xls_list.append([name, indices['MPSNR'], indices['SAM'], indices['MSSIM'],indices['ERGAS'],indices['RMSE'],indices['CrossCorrelation']])
print("=========Test finished==========")
print("Average:psnr:{:.4f}||sam:{:.4f}||ssim:{:.4f}||ergas:{:.4f}||rmse:{:.4f}||cc:{:.4f}".format(np.mean(psnr),np.mean(sam),np.mean(ssim),np.mean(ergas),np.mean(rmse),np.mean(cc)))
xls_list.append(['Average',np.mean(psnr),np.mean(sam),np.mean(ssim),np.mean(ergas),np.mean(rmse),np.mean(cc)])
xls_list = np.array(xls_list)
result = pd.DataFrame(xls_list, columns=['NAME','MPSNR','SAM','MSSIM','ERGAS','RMSE','CC'])
result.to_csv(args.model_type + args.dataset + 'x'+str(args.noise)+'.csv')
def tensor2single(img):
img = img.data.squeeze().float().cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
return img
def chop_forward(x, model, scale,shave=16):
b, c, h, w = x.size()
h_half, w_half = h // 2, w // 2
h_size, w_size = h_half + shave, w_half + shave
inputlist = [
x[:,:, 0:h_size, 0:w_size],
x[:,:, 0:h_size, (w - w_size):w],
x[:,:, (h - h_size):h, 0:w_size],
x[:,:, (h - h_size):h, (w - w_size):w]]
outputlist = []
for i in range(4):
input_batch = inputlist[i]
output_batch = model(input_batch)
outputlist.append(output_batch)
output = Variable(x.data.new(b, c, h*scale, w*scale))
print(output.shape)
output[:,:, 0:h_half*scale, 0:w_half*scale] = outputlist[0][:, :, 0:h_half*scale, 0:w_half*scale]
output[:,:, 0:h_half*scale, w_half*scale:w*scale] = outputlist[1][:, :, 0:h_half*scale, (w_size - w + w_half)*scale:w_size*scale]
output[:,:, h_half*scale:h*scale, 0:w_half*scale] = outputlist[2][:, :, (h_size - h + h_half)*scale:h_size*scale, 0:w_half*scale]
output[:,:, h_half*scale:h*scale, w_half*scale:w*scale] = outputlist[3][:, :, (h_size - h + h_half)*scale:h_size*scale, (w_size - w + w_half)*scale:w_size*scale]
return output
def save_mat(img, img_name):
save_dir=os.path.join('./Results', args.dataset,'x'+ str(args.noise))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
data=np.uint16(np.clip(img*65535,0,65535))
save_fn = os.path.join(save_dir, img_name +'_'+args.model_type+'.mat')
print(save_fn)
sio.savemat(save_fn, {'SR': data})
def save_checkpoint(args, model, epoch, path):
device = torch.device("cuda" if args.cuda else "cpu")
model.eval().cpu()
if not os.path.exists(path):
os.makedirs(path)
save_filename = '{}_{}_x{}_{}.pth'.format(args.model_type, args.dataset, args.scale, epoch)
save_path = os.path.join(path, save_filename)
state = {"epoch": epoch, "model": model}
torch.save(state, save_path)
model.to(device).train()
print("===Sucessfully save epoch {} model to {}===".format(epoch, save_path))
def load_network(network, path, strict=True):
if isinstance(network, nn.DataParallel):
network = network.module
network.load_state_dict(torch.load(path), strict=strict)
print("===Successfully load the pre-trained model===")
def adjust_learning_rate(start_lr, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 50 epochs"""
lr = start_lr * (0.1 ** (epoch // 160))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Basic parameters
parser.add_argument('--model_type', type=str, default='RFSR', help="Network") #The network architecture
parser.add_argument('--dataset', type=str, default='CAVE') #Dataset
parser.add_argument('--phase', type=str, default='train') #Phase
parser.add_argument('--seed', type=int, default=0) #Manual seed for PyTorch, "0" means using random seed
parser.add_argument('--gpus', type=str, default="2")
parser.add_argument('--cuda', type=bool, default=True)
parser.add_argument('--dataset_dir', type=str, default= '/data1/wxy/HSI/') #Dataset folder
# Parameters for train phase
parser.add_argument('--epoch', type=int, default=200) #Epoch number for meta-train phase
parser.add_argument('--lr', type=float, default=0.0001, help="Learning rate")
parser.add_argument('--batch_size', type=int, default=16, help="Learning rate")
parser.add_argument('--save_ckp', type=str, default='./Checkpoints', help="")
parser.add_argument('--RGB_premodel', type=bool, default=True)
parser.add_argument('--resume', type=bool, default=False, help="")
parser.add_argument('--resume_model', type=str, default='', help="")
#Parameters for image
parser.add_argument('--la1', type=float, default=0.5, help="")
parser.add_argument('--la2', type=float, default=0.1, help="")
parser.add_argument('--sam', type=bool, default=False, help ='') #Phase
parser.add_argument('--gra', type=bool, default=False, help ='')
#Parameters for image
parser.add_argument('--scale', type=int, default=4, help="The scale factor")
parser.add_argument('--patch_size', type=int, default=64, help ='The HR patch size') #Phase
parser.add_argument('--seq_len', type=int, default=31, help ='The LR patch size')
# Parameters for test phase
parser.add_argument('--test_dir', type=str, default='/data1/wxy/HSI/', help="Test data set")
parser.add_argument('--test_model', type=str, default='', help="The meta model path")
parser.add_argument('--save_path', type=str, default='./Results', help="")
parser.add_argument('--save_results', type=bool, default=True, help='')
# Set and print the parameters
args = parser.parse_args()
main(args)