-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutility.py
216 lines (149 loc) · 6.69 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import torch.nn as nn
import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp
def gauss(kernel_size, sigma):
kernel = np.zeros((kernel_size, kernel_size))
center = kernel_size//2
if sigma<=0:
sigma = ((kernel_size-1)*0.5-1)*0.3+0.8
s = sigma**2
sum_val = 0
for i in range(kernel_size):
for j in range(kernel_size):
x, y = i-center, j-center
kernel[i, j] = np.exp(-(x**2+y**2)/2*s)
sum_val += kernel[i, j]
kernel = kernel/sum_val
return kernel
class GaussianBlurConv(nn.Module):
def __init__(self, in_channels, kernel_size, sigma, padding):
super(GaussianBlurConv, self).__init__()
self.channels = in_channels
self.padding = padding
kernel = gauss(kernel_size, sigma)
kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
kernel = np.repeat(kernel, self.channels, axis=0)
self.weight = nn.Parameter(data=kernel, requires_grad=False)
def forward(self, x):
x = F.conv2d(x, self.weight, padding=self.padding, groups=self.channels)
return x
class L1_SAM_loss(nn.Module):
"""L1_SAM_loss."""
def __init__(self):
super(L1_SAM_loss, self).__init__()
self.eps = 1e-7
def forward(self, X, Y):
loss1=torch.mean(torch.abs(torch.add(X,-Y)))
tem1 = torch.sum(X*Y, dim=-3)
tem2 =torch.norm(X, dim=-3)*torch.norm(Y, dim=-3)
tem3 = tem1/(tem2+self.eps)
tem3 = torch.clamp(tem3,-1,1)
loss2 =torch.mean(torch.acos(tem3))/np.pi
return loss1, loss2
class L1_Average_loss(nn.Module):
"""L1_SAM_loss."""
def __init__(self):
super(L1_Average_loss, self).__init__()
self.eps = 1e-7
def forward(self, X, Y):
loss1=torch.mean(torch.abs(torch.add(X[0],-Y)))
loss2=torch.mean(torch.abs(torch.add(X[1],-Y)))
loss3=torch.mean(torch.abs(torch.add(X[2],-Y)))
loss4=torch.mean(torch.abs(torch.add(X[3],-Y)))
loss = (loss1 + loss2 + loss3 + loss4)/4
return loss
class L2_SAM_loss(nn.Module):
"""L2_SAM_loss."""
def __init__(self):
super(L2_SAM_loss, self).__init__()
self.esp = 1e-12
def forward(self, X, Y):
loss1= torch.mean(func.mse_loss(X, Y, sum))/2
nom=torch.mul(X,Y).sum(dim=1)
denominator = torch.norm(X, p=2, dim=1, keepdim=True).clamp(min=self.esp)*torch.norm(Y, p=2, dim=1, keepdim=True).clamp(min=self.esp)
denominator = denominator.squeeze()
sam = torch.div(nom, denominator).acos()
sam[sam!=sam] = 0
loss2 = torch.mean(sam)
return loss1, loss2
class L2_D_Loss(nn.Module):
def __init__(self,sequence_len):
super(L2_D_Loss, self).__init__()
self.sequence_len = sequence_len
def forward(self, X, Y):
loss3 = 0
for i in range(self.sequence_len):
if i<= self.sequence_len -2:
difference_p = X[:,i+1,:,:]-X[:,i,:,:]
difference_t = Y[:,i+1,:,:]-Y[:,i,:,:]
loss3_mse= torch.mean(func.mse_loss(difference_p, difference_t, sum))/2
loss3+= loss3_mse/(self.sequence_len-1)
return loss3
def default_conv(in_channels, out_channels, kernel_size, bias=True, dilation=1):
if dilation==1:
return nn.Conv2d(
in_channels, out_channels, kernel_size,
padding=(kernel_size//2), bias=bias)
elif dilation==2:
return nn.Conv2d(
in_channels, out_channels, kernel_size,
padding=2, bias=bias, dilation=dilation)
else:
return nn.Conv2d(
in_channels, out_channels, kernel_size,
padding=3, bias=bias, dilation=dilation)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average = True):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size = 11, size_average = True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def ssim(img1, img2, window_size = 11, size_average = True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)